Document Type : ORIGINAL RESEARCH ARTICLE

Author

Department of Civil Engineering, Vel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai 600062, Tamil Nadu, India

Abstract

The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI) concentration (dilution ratio).  The results of this study indicated that the order of maximum removal of chromium(VI) by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g andan initial chromium(VI) concentration of 18.125 mg/L (dilution ratio 4)is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans.  This study found that the maximum removal of chromium(VI) was achieved by Aspergillus niger (96.3 %) than other fungi species at chromium(VI) concentration of 18.125 mg/Lin a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger.  Biosorption model was proposed to simulate the experimental condition for removing chromium(VI) in a tannery industry wastewater by all isolated fungi species. The R2 and  values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI) in a tannery industry wastewater by all isolated fungi species.  This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and pH level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment. 

Graphical Abstract

Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

Highlights

  • Reduction of Cr(VI) in a tannery industry wastewater using fungi species
  • A. niger has more physiological adaptation for reducing Cr(VI) than other fungi
  • The experimental data of Cr(VI) reduction was simulated as biodegradation model
  • This study envisages for in-situ bio-reduction of any type of contaminants
  • This study helps to remove multi-metal contaminants from any aqueous solution

Keywords

Acevedo-Aguilar, F.A.; Wrobel, K.; Lokits, K.; Caruso, J.A.; Coreño Alonso, A.; Gutiérrez-Corona, J.F., Wrobel, K., (2008). Analytical speciation of chromium in in-vitro cultures of chromate-resistant filamentous fungi. Anal. Bioanal. Chem., 392: 269–276 (8 pages).
Akhtar, S.; Mahmood-ul-Hassan, M.; Ahmad, R.; Suthor, V.; Yasin, M., (2013). Metal tolerance potential of filamentous fungi isolated from soils irrigated with untreated municipal effluent. Soil Environ. 32: 55–62.
Aksu, Z.; Balibek, E., (2007). Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. Jo. Hazard. Mater. 145:  210–220 (11 pages).
Anand, P.; Isar, J.; Saran, S.; Saxena, R.K., (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Tech., 97: 1018–1025 (8 pages).
APPA, AWWA; WEF., (2005) Standard methods for the examination of water and wastewater, 21th edition, APHA Publication, Washington D.C.
Bai, J.; Wu, X.; Fan, F.; Tian, W.; Yin, X.; Zhao, L.; Fan, F.; Li, Z.; Tian, L.; Qin, Z.; Guo, J., (2012). Biosorption of uranium by magnetically modified Rhodotorula glutinis. Enzyme Microb. Tech., 51: 382–387 (8 pages).
Bureau of Indian Standards Drinking water specification (2004). Second revision, IS 10500:2004.
Chen, G.; Fan, J.; Liu, R.; Zeng, G.; Chen, A.; Zou, Z., (2012). Removal of Cd(II), Cu(II) and Zn(II) from aqueous solutions by live Phanerochaete chrysosporium. Environ. Tech., 33: 2653–2659 (7 pages).  
Ezzouhri, L.; Castro, E.; Moya, M.; Espinola, R.; Lairini, K., (2009). Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research., 3: 35–48 (14 pages). 
Fukuda, T.; Ishino, Y.; Ogawa, A.; Tsutsumi, K.; Morita, H., (2008b). Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. J. Gen. Appl. Microbiol.,
54: 295–303 (9 pages). 
Fukuda, T.; Tsutsumi, K.; Ishino, Y.; Satou, T.; Ogawa, A.; Morita, H., (2008a) Removal of hexavalent chromium in vitro and from contaminated soils by chromate-resistant fungi from chromium deposits. J. Environ. Biotech., 8: 111–118 (8 pages).  .
Gupta, M.; Manisha, K.; Grover, R., (2012) Effect of various media types on the rate of growth of Aspergillus niger.  Indian Journal of Fundamental and Applied Life Sciences., 2: 141–144 (4 pages).  .
Iqbal, A.; Absari, M.I.; Aqil, E., (2006). Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J. Experiment. Biol., 44: 73–76 (4 pages). 
Islam, M.S.; Saha, A.K.; Mosaddeque, H.Q.M.; Amin, M.R.; Islam, M.M., (2008). In vitro studies on the reaction of fungi Trichoderma to different herbicides used in tea plantation. Int. J. Sustain. Crop Prod. 3: 27–30 (4 pages).  .
Kapoor, T.V.; Cullimore, D.R. (1999). Removal of heavy metals using the fungus Aspergillus niger, Bioresource Tech., 70: 95–104 (10 pages). 
Lowe, K.L.; Straube, W.; Little, B.; Jones-Meehan, J., (2003). Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis. Acta. Biotechnol. 23: 161–178 (18 pages).  .
Islam, M.S.; Ali, M.; Rahman, M.S. (2011). In vitro studies on the fungicidal effect on Trichoderma species in tea plantation, Bangladesh J. Agril. Res., 36: 677–683 (7 pages). 
Mala, J.G.S.; Nair, B.U.; Puvanakrishnan, R., (2006). Accumulation and biosorption of chromium by Aspergillus niger MTCC2594. J. Gen. Appl. Microbiol., 52: 179–186 (8 pages).
Munees, A,; Mulugeta, K., (2013). Recent trends in microbial biosorption of heavy metals: A review. Biochem. Molecular Biol., 1: 19–26 (8 pages).
Podgorskii, V.S.; Kasatkina, T.P.; Lozovaia, O.G., (2004). Yeasts-biosorbents of heavy metals.  Mikrobiolohichnyĭ zhurnal., 66: 91–103 (13 pages).  .
Popa, K.; Cecal, A.; Drochioiu, G.; Humelnicu, D., (2003). Saccharomyces cerevisiae as uranium bioaccumulating material: the influence of contact time, pH and anion nature. Nukleonika 48: 121–125 (5 pages).   
Potin, O.; Rafin, C.; Veiguie, E., (2004). Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs) contaminated soil by filamentous fungi isolated from the soil international. Biodeterio Biodegrad.
54: 45–52 (8 pages).
Price, M.; Classen, J.; Payne, G., (2001). Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresour. Technol. 77: 41–49 (9 pages). 
Radder, H., (1992). Experimental reproducibility and the experimenters’ regress, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1: 63–73 (11 pages).  .
Shankar, D.; Sivakumar, D.; Yuvashree, R., (2014). Chromium (VI) removal from tannery industry wastewater using fungi species. Pollut. Res. 33: 505–510 (6 pages).  
Shazia, I.; Iftikhar ,A.; Javed, B.; Yaqoob, S.; Akhtar, K.; Kazmi, M.R.; Badar-Uz-Zaman, (2009). Fungal tolerance to heavy metals. Pak. J. Bot. 41: 2583–2594 (12 pages).  .
Shazia, I.; Parveen, K.; Usman, J.; Nasir, K.; Akhtar, N.; Arouj, S.; Ahmad, I., (2012). Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater.  Biologija 58: 107–116 (10 pages). 
Shazia, I.; Kousar, P.; Naila, S.; Kanwal, W.; Ijaz, A.; Iftikhar, A., (2013a). Tolerance potential of different Species of Aspergillus as bioremediation tool - Comparative analysis. J. Microbiol. Res. 1: 001–008 (8 pages). 
Shazia, I.; Khadija, B.; Iftikhar, A., (2013b). Tolerable analysis of the fungi of the Peri-urban agricultural area. Pak. J. Bot., 45(S1): 475-480 (6 pages). 
Shugaba, A.; Buba, F.; Kolo, B.G.; Nok, A.J.; Ameh, D.A.; Lori, J.A., (2012). Uptake and Reduction of Hexavalent Chromium by Aspergillus niger and Aspergillus parasiticus. Petrol. Environ. Biotech.
3: 1–8 (8 pages). 
Sivakumar, D., (2011). A study on contaminant migration of sugarcane effluent through porous soil medium. Int. J. Environ. Sci. Tech. 8: 593–604 (12 pages).
Sivakumar, D., (2013a). Experimental and analytical model studies on leachate volume computation from solid waste. Int. J. Environ. Sci. Tech. 10: 903–916 (14 pages). 
Sivakumar, D., (2013b). Adsorption study on municipal solid waste leachate using moringa oleifera seed. Int. J. Environ. Sci. Technol. 10: 113–124 (12 pages). 
Sivakumar, D., (2015). Hexavalent chromium removal in a tannery industry wastewater using rice husk silica. Global J. Environ. Sci. Manage. 1(1): 27–40 (14 pages). 
Sivakumar, D.; Gayathri, G.; Nishanthi, R.; Vijayabharathi, V.; Sudeshna, D.; Kavitha, R., (2014a). Role of fungi species in colour removal from textile industry wastewater. Int. J. ChemTech. Res. 6: 4366–4372 (7 pages). 
Sivakumar, D.; Kandaswamy, A.N.; Gomathi, V.; Rajeshwaran, R.; Murugan, N., (2014b). Bioremediation studies on reduction of heavy metals toxicity. Pollut. Res., 33: 553–558 (6 pages).  .
Sivakumar, D.; Murugan, N.; Rajeshwaran, R.; Shobana, T.; Soundarya, C.; Vanitha, V.S., (2014c). Role of rice husk silica powder for removing Cr(VI) in a tannery industry wastewater. Int. J. ChemTech Res., 6: 4373–4378 (6 pages). 
Sivakumar, D.; Shankar, D.; Dhivya, P.; Balasubramanian, K., (2014d). Bioaccumulation study by lemna gibba lin. Pollut. Res., 33: 531–536 (6 pages).   
Sivakumar, D.; Shankar, D.; Kandaswamy, A.N.; Ammaiappan, M., (2014e). Role of electro-dialysis and electro-dialysis cum adsorption for chromium (VI) reduction.  Pollut. Res. 33: 547–552 (6 pages). 
Turnau, K.; Orlwska, E.; Ryszka, P.; Zubek, S.; Anielska, T.; Gawronski, S.; Jurkiewicz, A., (2006). A role of mycorrhizal fungi in phytoremediation and toxicity monitoring of heavy metal rich industrial wastes in southern Poland. Soil Water Pollut. Monit. Prot. Remed. 3: 533–551 (19 pages). 
Velizar, K.G.; Zdravka, I.V.; Margarita, S.S., (2013). Hexavalent chromium removal by waste mycelium of Aspergillus awamori. J. Serb. Chem. Soc., 75: 551–564 (14 pages).  
Xu, X.; Xia, L.; Huang, Q.; Gu, J.D., Chen, W., (2012). Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environ. Tech., 33: 1661–1670 (10 pages).   
Zafar, S.; Aqil, F.; Ahmad, I., (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Biores. Tech. 98: 2557–2561 (5 pages). 

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image