Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, South Africa

2 Greater Mapungubwe Transfrontier Conservation Area, International Coordination Office, Zimbabwe Parks and Wildlife Management Authority, P O Box CY 140 Causeway, Harare, South Africa

3 Peace Parks Foundation, 11 Termo Road, Techno Park, PO Box 12743, Die Boord, Stellenbosch, South Africa

Abstract

Mapungubwe Cultural Landscape (MCL) woody vegetation was characterized to establish structural and compositional attributes. Stratified random sampling based on major soil types was used and nine plant variables were measured in 137(20x30) m2 sampling plots; these being genera, species and family names; basal circumference; plant height; depth and diameter of tree canopy; number of stems per plant; plant life status; number of trees and shrubs; and number of saplings. A total of 3114 woody plants were sampled, comprising an assemblage of 28 families, 63 genera and 106 species. The results suggest alluvial floodplain flanking the Limpopo River is a biodiversity hotspot with high plant species diversity (H’=1.8-2.2) 1/ha, taller trees (P<0.05) with median height per plot ranging between 6.1-10 m, high canopy volume at 105783 (443155m3/ha) and basal area (16.9-111m2/ha). The Arenosols-Regosol stratum had significantly shorter trees (P<0.05) with median height per plot between 3-4 m, low species diversity (H’=0.8-2.3) 1/ha, low basal area (3.23-48.2m2/ha) and low canopy volume (6687.08(155965.00) m3/ha. The Cambisol-Luvisol stratum in the western section of MCL had high number of stems/plant at 1.65 (1.40), high woody plant density 483.33 (900.00) 1/ha, F3,137=19.07, P<0.05), high density of dead plants 16.67 (133.30) 1/ha and high sapling density 208.33 (850.00) 1/ha. The present study suggests soil type is a key determinant of woody vegetation structure and composition. The study recommends regular vegetation monitoring, periodic update of plant species inventories in protected areas, control of exotic invasive woody plant species found along the Limpopo river floodplain within the biodiversity management framework of Greater Mapungubwe Transfrontier Conservation Area initiative.

Graphical Abstract

Vegetation structure and composition in the semi-arid Mapungubwe Cultural Landscape

Highlights

  • Woody plant species found in Mapungubwe National Park and World Heritage Site
  • Spatially-explicit record of woody plant family assemblage which is so interested in palaeoecological research.
  • Insights on woody species regeneration and recruitment into various size classes which is a key ecological attribute
  • Management interventions required to guide habitat restoration programs and establishing the conservation status of specific ecosystems

Keywords

Adams, J., (2007). Vegetation climate interaction: How vegetation makes the global environment. Praxis Publishing, Chichester, UK, Springer Praxis Books in environmental Sciences. 275 pages.
Aerts, R.; Chapin, F., (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res., 30: 1–67 (67 pages).
Apguaua, D.M.G.; Pereira, R.M.; Santos, G.C.O.; Menino, G.G.; Pires, M.A.L.; and, F.; Dyp, T.N.G., (2015). Floristic variation within seasonally dry tropical forests of the Caatinga Biogeographic Domain, Brazil, and its conservation implications. Int. Forest. Rev., 17(S2): 33.
Bakker, E.S.; Gill, J.L.; Johnson, C.N.; Vera, F.W.; Sandom, C.J.; Asner, G.P.; Svenning, J.-C., (2015). Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences;02545.
Berryman, A.A., (1983). Defining the resilience thresholds of ecosystems. Analysis of ecological systems: State-of-the-art in ecological modeling.
Bertzky, B.; Corrigan, C.; Kemsey, J.; Kenney, S.; Ravilious, C.; Besançon, C.; Burgess, N., (2012). Protected Planet Report 2012: Tracking progress towards global targets for protected areas. IUCN, Gland, Switzerland and UNEP-WCMC, Cambridge, UK. For all correspondence relating to this report please contact: protectedareas@ unep-wcmc. Org, UNEP promotes environmentally sound practices globally and in its own activities. This publication is printed on 100% recycled paper, using vegetable-based inks and other eco-friendly practices. The distribution policy aims to reduce UNEP’s carbon footprint. iii Protected Planet Report, 5.
Bezuidenhout, H., (2002). Generalized soil map for Dongola / Vhembe National Park. Internal SANParks Scientific Report, AERU, Kimberley, South Africa.
Breman, E.; Gillson, L.; Willis, K., (2012). How fire and climate shaped grass-dominated vegetation and forest mosaics in northern South Africa during past millennia. The Holocene, 22: 1427-1439 (13 pages).
Bruch, A.A.; Sievers, C.; Wadley, L., (2012). Quantification of climate and vegetation from Southern African Middle Stone Age sites–an application using Late Pleistocene plant material from Sibudu, South Africa. Quaternary Sci. Rev., 45: 7-17 (11 pages).
Buitenwerf, R.; Bond, W.; Stevens, N.; Trollope, W., (2012). Increased tree densities in South African savannas:> 50 years of data suggests CO2 as a driver. Global Change Biol., 18: 675-684 (10 pages).
Carruthers, J., (2006). Mapungubwe: an historical and contemporary analysis of a World Heritage cultural landscape. Koedoe, 49: 1-13 (13 pages).
Caton-Thompson, G., (1939). Mapungubwe. I. The excavations and culture. Antiquity, 13: 324-341( 18 pages).
Charles-Dominique, T.; Staver, A.; Midgley, G.; Bond, W., (2015). Functional differentiation of biomes in an African savanna/forest mosaic. South Afr. J. Botany, 101: 82–90 (9 pages).
Clegg, B.; O'connor, T., (2012). The vegetation of Malilangwe Wildlife Reserve, south-eastern Zimbabwe. Afr. J. Range Forage Sci., 29(3): 109-131 (23 pages).
Coe, M.; Cumming, D.; Phillipson, J., (1976). Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia, 22(4): 341-354 (14 pages).
Coetzer, K.L.; Erasmus, B.F.; Witkowski, E.T.; Reyers, B., (2013). The Race for Space: Tracking Land-Cover Transformation in a Socio-ecological Landscape, South Africa. Environ. Manage.,  52(3): 595-611 (16 pages).
Coetzer, W., (2012). A new era for specimen databases and biodiversity information management in South Africa. Biodiversity Info., 8(1): 1-11 (11pages).
DEA, (2013). Audit of Land Use Activities Report. The audit of land use activities in and around Mapungubwe Cultural Landscape World Heritage Site and to facilitate negotiations for the Review of the Mapungubwe Buffer Zone. Department of Environmental Affairs and Tourism, Pretoria, South Africa.
Doughty, C.E.; Faurby, S.; Svenning, J.C., (2015). The impact of the megafauna extinctions on savanna woody cover in South America. Ecography.
Drechsel, P.; Gyiele, L.; Kunze, D.; Cofie, O., (2001). Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecol. Econ., 38(2): 251-258 (8 pages).
Fagan, B., (1964). The Greefswald sequence: Bambandyanalo and Mapungubwe.  J.  Afr. Hist., 5(03): 337-361 (25 pages).
FAO, (2012). Harmonized World Soil Database (version 1.2). Rome & Laxenburg, Austria. FAO/IIASA/ISRIC/ISSCAS/JRC, The United Nations Food and Agriculture Organisation, Available from: http://www.fao.org/soilsportal/soil-survey/soil-maps-and-databases/harmonizedworld-soil-database-v12/en/.
Forssman, T., (2014). The spaces between places: a landscape study of foragers on the Greater Mapungubwe Landscape, southern Africa. Azania: Archaeological Res. Afr., 49(2): 282-282 (1 page).
Gandiwa, E.; Kativu, S., (2009). Influence of fire frequency on Colophospermum mopane and Combretum apiculatum woodland structure and composition in northern Gonarezhou National Park, Zimbabwe. Koedoe, 51(1): (13 pages). Doi: 10.4102/koedoe.v51i1.685.
Gandiwa, E.; Magwati, T.; Zisadza, P.; Chinuwo, T.; Tafangenyasha, C., (2011). The impact of African elephants on Acacia tortilis woodland in northern Gonarezhou National Park, Zimbabwe. J. Arid Environ., 75(9): 809-814  (6 pages).
Gandiwa, P.; Chinoitezvi, E.; Gandiwa, E., (2013). Structure and composition of woody vegetation in two Important Bird Areas in southern Zimbabwe.  J. Animal  Plant Sc., 23(3): 813-820 (8 pages).
Gardner, G.A., (1955). Mapungubwe 1935-1940. The South African Archaeological Bulletin: 73-77 (5 pages).
Gardner, G.A., (1958). Mapungubwe and the second volume: presidential address, 1958. The South African Archaeological Bulletin: 123-132 (10 pages).
Gardner, G.A., (1963). Mapungubwe Vol. II. Pretoria: JL van Schaik.
Gaugris, J.Y.; Vasicek, C.A.; Van Rooyen, M.W., (2014). Woody Vegetation Utilisation in Tembe Elephant Park, Kwazulu-Natal, South Africa. Int. J. Biol., 6(3): 24-35 (12 pages).
Germishuizen, G.; Meyer, N.; Steenkamp, Y.; Keith, M., (2006). Plants of Southern Africa: An Annotated Checklist, SABONET Report 41. National Botanical Institute, Pretoria.
Gillson, L.; Marchant, R., (2014). From myopia to clarity: sharpening the focus of ecosystem management through the lens of palaeoecology. Trends Ecol. Evol., 29(6): 317-325 (9 pages).
GMTFCA TTC, (2010). Greater Mapungubwe Transfrontier Conservation Area(GMTFCA) integrated development plan, First Edition. Trilateral Technical Committee, xii, (129 pages).
Götze, A.; Cilliers, S.; Bezuidenhout, H.; Kellner, K., (2003). Analysis of the riparian vegetation (Ia land type) of the proposed Vhembe-Dongola National Park, Limpopo Province, South Africa. Koedoe, 46(2): 45-64 (10 pages).
Gotze, A.R.; Cilliers, S.S.; Bezuidenhout, H.; Kellner, K., (2008). Analysis of the vegetation of the sandstone ridges (Ib land type) of the north-eastern parts of the Mapungubwe National Park, Limpopo Province, South Africa: original research. Koedoe: African Protected Area Conserv. Sci., 50(1): 72-81 (10 pages).
Hall, S.; Smith, B., (2000). Empowering places: rock shelters and ritual control in farmer-forager interactions in the northern province, South Africa. South African Archaeological Society Goodwin Series, 8: 30-46 (16 pages).
Hartemink, A.E.; Huting, J., (2008). Land cover, extent, and properties of Arenosols in Southern Africa. Arid Land Res. Manage., 22(2): 134-147 (4 pages).
Henneberg, M.; Steyn, M., (1994). Preliminary report on the paleodemography of the K2 and Mapungubwe populations (South Africa). Hum. Biol., 66(1): 105-120 (16 pages).
Henning, D.; Beater, J., (2014). Mapungubwe Cultural Landscape World Heritage Site Environmental Management Framework: Strategic Environmental Management Plan. Department of Environmental Affairs of South Africa.
Huffman, T.N., (1996). Archaeological evidence for climatic change during the last 2000 years in southern Africa. Quaternary Int., 33: 55-60 (6 pages).
Huffman, T.N., (2000). Mapungubwe and the origins of the Zimbabwe culture. Goodwin Series: 14-29 (16 pages).
Huffman, T.N., (2005). Mapungubwe: ancient African civilisation on the Limpopo.
Huffman, T.N., (2009). Mapungubwe and Great Zimbabwe: The origin and spread of social complexity in southern Africa. J. Anthropological Archaeology, 28(1): 37-54 (18 pages).
Huffman, T.N.; Woodborne, S., (2015). Archaeology, baobabs and drought: Cultural proxies and environmental data from the Mapungubwe landscape, southern Africa. The Holocene, http://hol.sagepub.com/content/early/ 2015/10/07/0959683615609753.abstract
Kotze, P., (2015). Riparian vegetation: feature. Water Wheel, 14(4): 28-31 (4 pages).
Ludwig, J.A.; Reynolds, J.F., (1988). Statistical ecology: A primer in methods and computing.
Major, J., (1951). A functional, factorial approach to plant ecology. Ecol., 32(3): 392-412 (21 pages).
McNaughton, S.; Banyikwa, F., (1995). Plant communities and herbivory. Serengeti II: Dynamics, management, and conservation of an ecosystem, 2, 49.
Meskell, L., (2013). A thoroughly modern park: Mapungubwe. UNESCO and Indigenous Heritage. In: González-Ruibal, A., Ed., Reclaiming Archaeology: Beyond the Tropes of Modernity. Routledge, Abingdon/New York.
Meyer, A., (2000). K2 and Mapungubwe. Goodwin Series: 4-13 (10 pages).
Meyer, A., (2011). The Mapungubwe archaeological project of the University of Pretoria. Mapungubwe remembered: contributions to Mapungubwe by the University of Pretoria. Johannesburg: Chris van Rensburg Publications: 56-87  (32 pages).
Midgley, G.F.; Bond, W.J., (2015). Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change, 5(9): 823-829 (7 pages).
Miller, D., (2001). Metal assemblages from Greefswald areas K2, Mapungubwe hill and Mapungubwe southern terrace. The South African Archaeological Bulletin: 83-103 ( 21pages).
Mitchell, S.A., (2013). The status of wetlands, threats and the predicted effect of global climate change: the situation in Sub-Saharan Africa. Aquat. Sci., 75(1): 95-112 (18 pages).
Moncrieff, G.R.; Hickler, T.; Higgins, S.I., (2015). Intercontinental divergence in the climate envelope of major plant biomes. Global Ecol. Biogeography, 24(3): 324-334 (11 pages).
O'Connor, T., (2010). Transformation of riparian forest to woodland in Mapungubwe National Park, South Africa, between 1990 and 2007. Austral Ecol., 35(7): 778-786 (9 pages).
O'Connor, T.G.; Kiker, G.A., (2004). Collapse of the Mapungubwe society: vulnerability of pastoralism to increasing aridity. Climatic Change, 66(1-2): 49-66 (17 pages).
Palmer, E.; Pitman, N., (1961). Trees of South Africa. 1st. Ed., Thakeham, West Sussex, UK.
Peterson, G., (2009). Ecological limits of adaptation to climate change. Adapting to climate change: thresholds, values, Governance: 211-219 (9 pages).
Pollarolo, L.; Kuman, K., (2009). Excavation at Kudu Koppie site, Limpopo Province, South Africa. South African Archaeological Bulletin, 64: 69-74 (6 pages).
Prinsloo, L.C.; Colomban, P., (2008). A Raman spectroscopic study of the Mapungubwe oblates: glass trade beads excavated at an Iron Age archaeological site in South Africa. J. Raman Spectrochim, 39(1): 79-90 (12 pages).
Pulla, S.; Ramaswami, G.; Mondal, N.; Chitra-Tarak, R.; Suresh, H.; Dattaraja, H.; Vivek, P.; Parthasarathy, N.; Ramesh, B.; Sukumar, R., (2015). Assessing the resilience of global seasonally dry tropical forests. Int.  Forestry Rev., 17(S2): 91-113 (23 pages).
Rouget, M.; Hui, C.; Renteria, J.; Richardson, D.; Wilson, J., (2015). Plant invasions as a biogeographical assay: Vegetation biomes constrain the distribution of invasive alien species assemblages. South Afr. J. Botany: 101:  24-31 (8 pages).
Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le Roux, X.; Ludwig, F., (2005). Determinants of woody cover in African savannas. Nature, 438(7069): 846-849 (4 pages).
Scholes, R., (1990). The influence of soil fertility on the ecology of southern African dry savannas. J. Biogeography, 17: 415-419 (5 pages).
Scholes, R.; Archer, S., (1997). Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst., 28: 517-544 (28 pages).
Scholes, R.J.; Walker, B.H., (2004). An African savanna: synthesis of the Nylsvley study.
Scholtz, R.; Kiker, G.; Smit, I.; Venter, F., (2014). Identifying drivers that influence the spatial distribution of woody vegetation in Kruger National Park, South Africa. Ecosphere, 5(6): 1-12 (12 pages).
Selier, J.; Slotow, R.; Di Minin, E., (2015). Large mammal distribution in a Transfrontier Landscape: Trade‐offs between resource availability and human disturbance. Biotropica, 47(3): 389-397 (9 pages).
Selier, S.A.J.; Page, B.R.; Vanak, A.T.; Slotow, R., (2014). Sustainability of elephant hunting across international borders in southern Africa: A case study of the greater Mapungubwe Transfrontier Conservation Area.  J. Wildlife Manage., 78(1): 122-132 (11 pages).
Sensenig, R.L.; Demment, M.W.; Laca, E.A., (2010). Allometric scaling predicts preferences for burned patches in a guild of East African grazers. Ecol., 91(10): 2898-2907 (10 pages).
Sinclair, A., (2012). Ecological history guides the future of conservation: Lessons from Africa. Historical environmental variation in conservation and natural resource management: 265-272 (8 pages).
Sinthumule, N.I., (2014). Land use change and bordering in the Greater Mapungubwe Transfrontier Conservation Area. PhD Thesis, University of Cape Town: (246 pages).
Southworth, J.; Zhu, L.; Bunting, E.; Ryan, S.; Herrero, H.; Waylen, P.; Hill, M., (2015). Changes in vegetation persistence across global savanna landscapes, 1982–2010. J. Land Use Sci., 11 (7): 1-26 (26 pages).
StatSoft, (2001). STATISTICA for Windows, Version 6. StatSoft, 2300(Tulsa).
Truc, L.; Chevalier, M.; Favier, C.; Cheddadi, R.; Meadows, M.E.; Scott, L.; Carr, A.S.; Smith, G.F.; Chase, B.M., (2013). Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: implications for the long-term dynamics of the Intertropical Convergence Zone. Palaeogeography, Palaeoclimatology, Palaeoecology.
Tyson, P.D.; Lee-Thorp, J.; Holmgren, K.; Thackeray, J., (2002). Changing gradients of climate change in southern Africa during the past millennium: implications for population movements. Climatic Change, 52(1-2): 129-135 (7 pages).
Valeix, M.; Fritz, H.; Sabatier, R.; Murindagomo, F.; Cumming, D.; Duncan, P., (2011). Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biol. Conserv., 144(2): 902-912 (11 pages).
Vanlauwe, B.; Giller, K.E., (2006). Popular myths around soil fertility management in sub-Saharan Africa. Agric. Ecosyst. Environ., 116(1): 34-46 (13 pages).
Willis, K.; Bennett, K.; Burrough, S.; Macias-Fauria, M.; Tovar, C., (2013). Determining the response of African biota to climate change: using the past to model the future. Philosophical Transactions of the Royal Society B: Biol. Sci., 368, 1625.
Willis, K.; Whittaker, R., (2002). Species diversity-scale matters. Science, 295: 1245–1248 (4 pages).
Witkowski, E.; O’Connor, T., (1996). Topo-edaphic, floristic and physiognomic gradients of woody plants in a semi-arid African savanna woodland. Plant Ecol., 124: 9–23 (15 pages).
Zisadza-Gandiwa, P.; Mango, L.; Gandiwa, E.; Goza, D.; Parakasingwa, C.; Chinoitezvi, E.; Shimbani, J.; Muvengwi, J., (2013a). Variation in woody vegetation structure and composition in a semi-arid savanna of Southern Zimbabwe. Int. J. Biodivers. Conserv., 5(2): (71-77 pages).
Zisadza-Gandiwa, P.; Parakasingwa, C.; Mashapa, C.; Muboko, N.; Gandiwa, E., (2013b). Status of woody vegetation along riparian areas in Gonarezhou National Park, Zimbabwe. Greener J. Agric. Sci., 3(7): 592-597 (6 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image