Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2 Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

3 Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

Abstract

This study was investigated the efficiency of activated persulfate and in-vessel composting for removal of total petroleum hydrocarbons. Remediation by activated persulfate with ferrous sulfate as pre-treatment was done at batch system. In the chemical oxidation, various variables including persulfate concentrations (10-3000 mg/g as waste), pH (3-7), ferrous sulfate (0.5-4 mg/g as waste)and temperature (20-60°C) were studied. In the biological system, premature compost was added as an amendment. The filter cake to compost ratio were 1:0 (as control) and 1:5 to 15 (as dry basis). C: N: P ratio and moisture content were 100:5:1 and 45-60%, respectively. The results showed that acidic pH (pH=3) had high efficiency for the removal of total petroleum hydrocarbons by activated persulfate. Temperature had the significant effect during the persulfate oxidation. When ferrous sulfate was used as an activator for degradation at acidic condition and 60°C, removal efficiency increased to 47.32%. The results of biological process showed that the minimum total petroleum hydrocarbons removal in all reactors was 62 percent. The maximum and minimum removal efficiency was obtained at 1:5 (69.46%) and 1:10 (62.42%) mixing ratios, respectively. Kinetic study showed that second order kinetic model (R2>0.81) shows the best agreement with the experimental data and the rate of TPH degradation at low mixing ratio (1:3) was faster than high mixing ratio (1:15). Therefore, according to the results, in-vessel composting after pre-treatment by activated persulfate is suggested as an efficient process for degradation of total petroleum hydrocarbons. 

Graphical Abstract

Remediation of total petroleum hydrocarbons using combined in-vessel composting ‎and oxidation by activated persulfate

Highlights

  • Combination of activated persulfate and in-vessel composting can appropriately degrade the TPH
  • Microbial activity is main factor for the TPH degradation
  • Filter cake to compost ratio lower than 15: 1 can be significantly reduced the TPH

Keywords

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image