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Cities are experiencing rapid population growth and consequently extensive 
urbanization. Land-use/land-cover change is one of the important elements 
worldwide, which significantly affect the environment. This study aims to describe 
the emergence of urban heat and cool islands as a result of changes in land-use/
land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran 
was retrieved. The results confirmed the effect of land-use/land-cover change on 
Landsat land surface temperature. The average land surface temperature changed 
from 37.5°C in 1985 to 42.7°C in 2017 during August. The highest land surface 
temperature in the study area for both years occurred on bare soils (40.66°C in 
1985 and 45.88°C in 2017). The second highest Landsat land surface temperature 
was recorded in central parts of the city with dense built-up covers (36.93°C in 
1985 vs 42.45°C in 2017). The central parts of the city were found to have a lower 
Landsat land surface temperature compared to bare soils, which contributes to 
the formation of urban cool islands. As expected, water bodies and vegetation 
had a lower Landsat land surface temperature compared to other land covers. 
The results also showed changes in land use types during 1985 and 2017, with an 
increase in water bodies (148.82%) and built-up areas (39.67%) and a decrease in 
vegetation (20.08%) and bare soil (12.42%). The areas converted from vegetation 
to built-up experienced an increase in Landsat land surface temperature, which 
confirmed the effect of land-use/land-cover on microclimate.
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INTRODUCTION

Climate change started from pre-industrial 
ages and still continues (Orhan and Yakar, 2016). 
Intergovernmental Panel on Climate Change 
(IPCC) projected 1.4°C to 5.8°C increase in surface 
temperature by 2100 (Singh et al., 2017). Climate 
change is a consequence of numerous natural and 
anthropogenic activities including deforestation, 
land use/cover (LULC) changes, and urbanization 
(Yıldırım et al., 2011). Urbanization is posed as one 
of the most dominant anthropogenic phenomena, 
affecting the world since the 20th century (Singh et 
al., 2017). Urbanization has reshaped the landscape 
significantly through LULC change (Jeevalakshmi et 
al., 2017). Moreover, the Earth’s vegetation cover 
has been decreasing as a result of urbanization, 
increasing more carbon dioxide accumulation in the 
atmosphere, that in turn changes surface energy 
circulation and local climate (Islam and Islam, 2013; 
Sun et al., 2010). Higher temperature in urban areas 
compared to other land covers is referred to urban 
heat island (UHI) (Chen et al., 2014; Amanollahi et 
al., 2016). The UHI phenomenon was first defined 
by Luke Howard in early 1800s and ever since 
received extensive attentions due to its increasing 
effects (Howard, 1818). Urban heat islands (UHIs) 
are formed as a result of three phenomena. The 
main one is transformation of natural vegetated 
areas to non-evaporating and impervious surfaces 
(e.g. asphalt and tile), which absorb solar radiation 
extensively (Charabi and Bakhit, 2011). Moreover, 
vehicles, heat rejections from air conditions, factories 
and industries heat up urban areas rather than the 
surrounding environment. Lastly, high rise buildings 
reduce airflow and narrow lanes increase atmospheric 
temperature in compact urban areas, expanding the 
effect of heat island (Liu and Weng, 2012). Land 
surface temperature (LST) is an important indicator 
employed for assessing UHIs (Joshi and Bhatt, 
2012). LST which is directly related to land surface 
characteristics is defined as radiometric temperature 
released from land surface and captured by a sensor 
at instant viewing angles (Zhou et al., 2014, Zhou 
et al., 2011). Land use pattern changes affect LST in 
urban environments (Singh et al., 2017). Land uses 
have been changed by human requirements over 
time (Youneszadeh et al., 2015). Therefore, there is an 
essential need to investigate spatio-temporal land use 
change and its effects on UHIs in order to find possible 

solution for them (Seif and Mokarram, 2012). Remote 
sensing (RS) is a beneficial tool for quantifying LST 
in response to land cover change (Orhan and Yakar, 
2016). In other words, multi-temporal RS images 
could be applied to detect changes in surface cover 
and consequent changes in surface temperature (Seif 
and Mokarram, 2012; Butt et al., 2015; Rajeshwari 
and Mani, 2014). Application of satellite images in 
obtaining LST dates back to 1970s (Carlson et al., 
1977). Since then, this topic has received extensive 
attentions internationally (Alavipanah et al., 2015; 
Bai et al., 2016; Kim and Ryu, 2015). For example, 
Gebeyehu Admasu (2017) employed the normalized 
difference vegetation index (NDVI), obtained from 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS), to evaluate greenness and its link with 
LULC changes and rainfall in Addis Ababa over a 17-
year period. The mentioned study revealed that the 
majority of Addis Ababa (86%) was converted to built-
up area. Moreover, a considerable spatial reduction 
was found in the mean, maximum and standard 
deviations of NDVI, implying that the study area 
has become homogenous due to land conversions, 
particularly increased urbanization, at the expense 
of vegetation cover and agriculture. In another study, 
Ahmad (2012) conducted correlation analyses among 
four land cover indices (NDVI, normalized difference 
water index (NDWI), normalized difference built 
index  (NDBI), and normalized difference bareness 
index (NDBaI)) and LST. The results demonstrated a 
positive correlation between surface temperature 
and NDBI and a negative correlation of surface 
temperature with NDVI, NDWI, and NDBaI. Ahmad 
(2012) concluded that the detected relationships are 
established by increase of built-up areas and decrease 
of vegetation and water covers. By the usage of RS/
GIS for LULC change evaluation and assessing its effect 
on LST, Omran (2012) found that urban and barren 
lands have the highest LST, followed by waterlogged 
and vegetation. He also noted a negative correlation 
between NDVI and LST in all land use types. Kayet et al. 
(2016) considered the effects of ratio vegetation index 
(RVI) and soil adjusted vegetation index (SAVI) along 
with NDVI and NDBI on LST. The results of correlation 
analysis showed a negative relationship of LST with 
RVI, NDVI, and SAVI, and a positive relationship of 
LST with NDBI. Although UHIs in temperate regions 
have been extensively investigated, limited studies 
have been done on LST in arid urban areas (Lazzarini 
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et al., 2015). While temperate areas experience UHIs 
during daytime, arid urban areas are cooler than the 
surrounding contributing to the formation of urban 
cool islands (UCIs) (Cui and De Foy, 2012). Moreover, 
the impact of LULC changes on LST has not been well 
evaluated in most of arid areas which have been 
rapidly developed in recent years (Rasul et al., 2017). 
For example, Al-Ali and Mubarak (2015) considered 
the effect of UHIs in Al Ahsa oasis in Saudi Arabia, 
ignoring higher LST in bare soils surrounding the city 
(which reverses UHI effects). Therefore, the present 
study aims to assess the effect of LULC changes on LST 
over time. Isfahan city in Iran, with a semi-arid climate, 
was selected as a study area due to its rapid growth 
and alterations in recent years. Change detection 
(examining LULC changes), LST changes assessment, 
and finding the relationships between LULC changes 
and LST are the main objectives pursued. This study 
has been conducted in Isfahan, Iran in 1985 and 2017.  

MATERIALS AND METHODS

Study area
Isfahan is located in the central part of Iran at 

32°39’8.86” N latitude and 51°40’28.63” E longitude 
(Fig. 1). This city, with an area of 15774 km2 is the third 
largest city and one of the municipalities experiencing 
rapid development in Iran. Isfahan has a semi-arid 
climate, with an annual average temperature of 
15.6 °C and an annual rainfall of 125 mm. July and 
January are the months with the highest (28.2°C) and 
the lowest (2.2°C) average temperatures in Isfahan, 
respectively. Looking for better livelihood, a large 
number of population have migrated from rural 
areas to Isfahan induced the replacement of natural 
and open lands by urbanized landscape (Climate-
Data.Org, 2018). One of the main factors affecting 
Isfahan’s climate is Zayandehrud River. Although the 
river was always flowing through Isfahan in last years, 
recently it has been dried out due to excessive water 
extraction at the upstream.

Data
Landsat satellite images have been widely used 

in local studies of LST (Li et al., 2009, Amanollahi 
et al., 2016). In this study, images from Landsat 5 
Thematic Mapper (TM) for August 1985 and Landsat 
8 Operational Land Imager (OLI) for August 2017 were 
applied for considering land use changes and their 
effect on LST. Cloud-free images (Raw = 37, Path = 164, 

Projection = UTM, Zone Number = 39N) were obtained 
from USGS Earth Resource Observation Systems Data 
Center, which had been gone through geometric 
and radiometric corrections (Sun et al., 2010). 
Characteristics of selected images are provided in 
Table 1. Band 6 of TM and Band 10 of OLI were applied 
to retrieve LST. According to USGS instruction, it would 
be better not to use Band 11 of OLI in LST retrieval due 
to its larger calibration unreliability (Jeevalakshmi et 
al., 2017). Near infrared (NIR) and Red bands were also 
applied to calculate NDVI.

Image classification for producing LULC map
LULC map of the study area was generated for 1985 

and 2017 using the maximum likelihood supervised 
classification using Idrisi TerrSet. In supervised 
classification, firstly the number of land use classes is 
determined. Secondly, sample pixels (also known as 
training pixels), representing specific land use types, 
are selected by users. Training sites are then applied 
as references for classifying the entire image. In other 
words, training sites are used to calculate the mean 
and covariance of spectral bands for each land use 
class. The means and covariances are then applied 

Fig. 1. Geographic location of the study area in Isfahan, Iran
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to allocate pixels into a particular land use (Briottet 
et al., 2017, Ahmad and Quegan, 2012 ). Maximum 
likelihood is one of the algorithms applied to assign 
an unknown pixel to a specific land use type in 
supervised classification. The algorithm calculates the 
likelihood that a particular pixel is part of a specific 
land use type. Then the pixel is assigned to a land 
use with highest probability (Sisodia et al., 2014). 
Four land use/cover classes were determined for the 
study area including built-up, vegetation, bare soil, 
and water. Selected Landsat images were segmented 
into regions associated with predetermined land use 
classes. In the next step, the representative sample 
segments of a specific cover type (training sites) were 
selected to drive spectral signature for each land use 
type. In the final step, maximum likelihood method 
was applied in supervised classification of the images, 
assigning equal probability values to each cover type.

Land surface temperature (LST)
LST is largely affected by land surface emissivity 

that is related to NDVI (Zhou et al., 2014, Njoku, 
2014). Therefore, NDVI-based emissivity method was 
applied in this study for extracting LST from Band 6 of 
Landsat TM 5 and Band 10 of Landsat 8 OLI, using the 
following process:

a) Calculation of top of the atmosphere (TOA) 
radiance: For TM 5 thermal band, the digital number 
(DN) of each pixel was converted to spectral radiance 
using Eq. 1 (NASA, 2010).

( )max min
min min

max min

L LL QCal QCal L
QCal QCal

λ λ
λ

−
= × − +

−
      (1)

Where, L𝛌 is TOA spectral radiance (W/m2sr µm); 
Lmax𝛌 is spectral radiance scales to QCalmax; Lmin  is spectral 
radiance scales to QCalmin;  QCalmax is the maximum 
quantized calibrated pixel value (typically=255); 
QCalmin is the minimum quantized calibrated pixel value 
(typically=1); and QCal is quantized calibrated DN. 

Equation 2 was employed to obtain TOA radiance 
for Landsat 8 OLI based on the radiance rescaling 
factors in Metadata file (Barsi et al., 2014): 
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Where, L𝛌 is TOA Spectral radiance (W/m2sr µm), 
ML is band-specific multiplicative rescaling factor; QCal 
is quantized calibrated DN; and AL is band-specific 
additive rescaling factors.

b) Calculation of brightness temperature (TB): TOA 
radiance was transformed to brightness temperature 
with Eq. 3 (Giannini et al., 2015).
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Table 1: Characteris cs of selected satellite images  
 

Name Date of capture Number 
of bands 

Bands wavelength (µm) 

Landsat 5 Thema c Mapper (TM) 1985/08/02 7 Blue (0.45-0.52) 
Green (0.52-0.60) 
Red (0.63-0.69) 
Near Infrared (0.76-0.90) 
Shortwave Infrared 1 (1.55-1.75) 
Thermal (10.40-12.50) 
Shortwave Infrared 2 (2.08-2.35) 

Landsat 8 Opera onal Land Imager (OLI) 2017/08/03 11 Coastal aerosol (0.43-0.45) 
Blue (0.45-0.51) 
Green (0.53-0.59) 
Red (0.64-0.67) 
Near Infrared (0.85-0.88) 
Shortwave Infrared 1 (1.57-1.65) 
Shortwave Infrared 2 (2.11-2.29) 
Panchroma c (0.50-0.68) 
Cirrus (1.36-1.34) 
Thermal Infrared 1 (10.60-11.19) 
Thermal Infrared 2 (11.50-12.51) 

 
  

Table 1. Characteristics of selected satellite images
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Where, TB is brightness temperature (K); Lλ is top 
of the atmosphere radiance (W/m2sr/µm); K1 and 
K2 are calibration constants (W/m2sr µm) which can 
be identified using the Metadata file associated 
with the satellite image; and -273.15 is used for 
converting brightness temperature from Kelvin to 
Celsius. c). 

c) Calculation of NDVI: NDVI was calculated 
based on the reflectance values of visible red 
(ρRed) and near infrared (ρNIR) bands obtained by 
atmospheric correction according to Eq. 4 (Giannini 
et al., 2015): 

3 
 

Where, L𝛌𝛌 is TOA spectral radiance (W/m2sr µm); Lmax𝛌𝛌 is spectral radiance scales to QCalmax; Lmin  is spectral radiance 
scales to QCalmin;  QCalmax is the maximum quantized calibrated pixel value (typically=255); QCalmin is the minimum 
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Calculation of NDVI is necessary for calculating fractional vegetation cover (Pv) and emissivity (ԑ) in Steps d and e.;  
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e) Calculation of land surface emissivity (LSE or ε): An NDVI thresholds method was applied for LSE estimation from 
Landsat 8 OLI image using Eq. 6 (Jeevalakshmi et al., 2017). 
 

𝜀𝜀 = {
εw = 0.991                                           NDVI ≤ 0

εs = 0.966                                      0 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 < 0.2
εvPv + εs(1 − Pv) + Cλ           0.2 ≤ NDVI ≤ 0.5

εv = 0.973                                    NDVI > 0.5
                                                                          (6) 

 
Where, ԑw, ԑv and ԑs are water, vegetation and soil emissivity, respectively, and C𝛌𝛌 is surface roughness considered 
as 0 for a flat surface. For calculating emissivity in Landsat TM 5, four cases were considered in Eq. 7 (Vlassova et 
al., 2014). 
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Where, λ is emitted radiance wavelength (11.45 µm for Landsat TM 5 and 10.895µm for Landsat 8 OLI); ρ is equal 
to 0.01438 mK and is produced using ρ = h×c/b, in which “h” is the Planck’s constant (6.626×10-34 Js), “c” is the 
velocity of light (2.998×108 m/s), and “b” is the Boltzmann constant (1.38×10-23 J/K); and ε is surface emissivity. 
 
RESULTS AND DISCUSSION 
Land-use/land-cover (LULC) changes during 1985 and 2017 
LULC maps of Isfahan in 1985 and 2017 are illustrated in Fig. 2. Before change detection, it is essential to assess the 
accuracy of individual LULC classification (El-Hattab, 2016). 100 random check points were used to check the 
accuracy of the classified maps using Geographical Position System (GPS) and Google Earth for 2017 and aerial 
photographs and topographic maps for 1985. The most appropriate number of random check points for each class 
is “n(n + 1)” where n is the number of classes (El-Hattab, 2016). Error matrix was then created to compare 
reference data and classification results and to generate the overall accuracy and Kappa coefficient tables. The 
Kappa statistic considers the off-diagonal elements of the error matrix and represents the possibility of agreement 
between reference data and classification results occurring by chance (Bogoliubova and Tymków, 2014). Based on 
the results obtained from the error matrix, the overall accuracies of 1985 and 2017 images were 90% and 88% 
respectively. The Kappa coefficients for 1985 and 2017 were 85% and 82%, respectively. Considering different 
methods for land use classification including minimum distance of mean (MDM), Mahalanobis distance (MD), 
maximum likelihood (ML), artificial neural network (ANN), spectral angle mapper (SAM), and support vector 
machine (SVM), Yousefi et al. (2015) found ML and SVM as the most appropriate algorithms for preparing land use 
maps with Kappa of 0.94 and 0.93, respectively. In another study, Varamesh et al. (2017) generated land use maps 
based on object based image classification (OBIC) and maximum likelihood and found overall accuracy and kappa 
coefficients of 94.69% and 0.93 for OBIC and 81.53% and 0.75 for ML. They also concluded that accuracy rate over 
85% is acceptable for land use mapping.  
The classified images of both years show notable changes in the city in the last three decades. The post 
classification change detection technique (Alagu Raja et al., 2013) was applied to monitor the size and distribution 
of land cover changes over the 32-year period (Table 2 and Fig. 3). To clarify Fig. 3 legend, Fig. 3 represents pattern 
of LULC change for 1985-2017 in which each land cover type is presented by a value (i.e. 1) built-up 2) vegetation 
3) bare soil and 4) water. For example “2I1” in the legend indicates places where vegetation cover was converted 
to built-up areas from 1985-2017. As can be seen, built-up areas and water areas have been increased in 32 years. 
The share of built-up areas had an increase from 155.16 km2 in 1985 to 216.71 km2 in 2017, indicating conversion 
from vegetation cover and bare soil cover to built-up areas. Water bodies increased from 0.12% to 0.29%. In 1985, 
Zayandehrud River was dry as a result of no water discharge from the dam storing Zayandehrud water. However, 
in 2017 the river had flowed through Isfahan due to increase in water discharge. On the other hand, vegetation 
and bare soil covered larger areas in 1985 than in 2017. These decreasing trends might have two reasons. 
Vegetation and bare soil had been cleared to provide enough space for the increased population and required 
development. Due to unsuccessful agricultural practices/businesses and water shortage, some agricultural lands 
were abandoned by farmers, leading to reduction of vegetation cover and conversion to bare soil. 
 
Changes in LSTs 

   (8) 

 f) Calculation of LST: Eq. 8 was used to convert 
brightness temperature to land surface temperature 
(Orhan and Yakar, 2016):

  
    ( )*1 *

B

B

TLST
T lnλ ε
ρ
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Where, λ is emitted radiance wavelength (11.45 

µm for Landsat TM 5 and 10.895µm for Landsat 
8 OLI); ρ is equal to 0.01438 mK and is produced 
using ρ = h×c/b, in which “h” is the Planck’s constant 
(6.626×10-34 Js), “c” is the velocity of light (2.998×108 
m/s), and “b” is the Boltzmann constant (1.38×10-23 

J/K); and ε is surface emissivity.
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RESULTS AND DISCUSSION

Land-use/land-cover (LULC) changes during 1985 and 
2017

LULC maps of Isfahan in 1985 and 2017 are 
illustrated in Fig. 2. Before change detection, it 
is essential to assess the accuracy of individual 
LULC classification (El-Hattab, 2016). 100 random 
check points were used to check the accuracy of 
the classified maps using Geographical Position 
System (GPS) and Google Earth for 2017 and aerial 
photographs and topographic maps for 1985. The 
most appropriate number of random check points 
for each class is “n(n + 1)” where n is the number 
of classes (El-Hattab, 2016). Error matrix was then 
created to compare reference data and classification 
results and to generate the overall accuracy 
and Kappa coefficient tables. The Kappa statistic 

considers the off-diagonal elements of the error 
matrix and represents the possibility of agreement 
between reference data and classification results 
occurring by chance (Bogoliubova and Tymków, 
2014). Based on the results obtained from the error 
matrix, the overall accuracies of 1985 and 2017 
images were 90% and 88% respectively. The Kappa 
coefficients for 1985 and 2017 were 85% and 82%, 
respectively. Considering different methods for 
land use classification including minimum distance 
of mean (MDM), Mahalanobis distance (MD), 
maximum likelihood (ML), artificial neural network 
(ANN), spectral angle mapper (SAM), and support 
vector machine (SVM), Yousefi et al. (2015) found 
ML and SVM as the most appropriate algorithms 
for preparing land use maps with Kappa of 0.94 and 
0.93, respectively. In another study, Varamesh et al. 
(2017) generated land use maps based on object 
based image classification (OBIC) and maximum 
likelihood and found overall accuracy and kappa 
coefficients of 94.69% and 0.93 for OBIC and 81.53% 
and 0.75 for ML. They also concluded that accuracy 
rate over 85% is acceptable for land use mapping. 

The classified images of both years show notable 
changes in the city in the last three decades. The 
post classification change detection technique 
(Alagu Raja et al., 2013) was applied to monitor the 
size and distribution of land cover changes over the 
32-year period (Table 2 and Fig. 3). To clarify Fig. 
3 legend, Fig. 3 represents pattern of LULC change 
for 1985-2017 in which each land cover type is 
presented by a value (i.e. 1) built-up 2) vegetation 
3) bare soil and 4) water. For example “2I1” in the 
legend indicates places where vegetation cover was 
converted to built-up areas from 1985-2017. As can 
be seen, built-up areas and water areas have been 
increased in 32 years. The share of built-up areas 
had an increase from 155.16 km2 in 1985 to 216.71 
km2 in 2017, indicating conversion from vegetation 
cover and bare soil cover to built-up areas. Water 
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Table 2: Area of land-use/land-cover classes (1985 and 2017) in Isfahan 

LULC Class 
1985 2017 1985-2017 

Area 
(km2) 

Total area 
(%) 

Area 
(km2) 

Total area 
(%) 

Change 
(km2) 

Change from 
original area (%) 

Built-up 155.16 28.15 216.71 39.32 61.55 39.67 
Vegetation 174.47 31.65 139.43 25.29 -35.04 -20.08 
Bare soil 220.93 40.08 193.48 35.10 -27.45 -12.42 
Water 0.635 0.12 1.58 0.29 0.945 148.82 
Total 551.2 551.2 - 

Table 2. Area of land-use/land-cover classes (1985 and 2017) in Isfahan
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bodies increased from 0.12% to 0.29%. In 1985, 
Zayandehrud River was dry as a result of no water 
discharge from the dam storing Zayandehrud water. 
However, in 2017 the river had flowed through 
Isfahan due to increase in water discharge. On the 
other hand, vegetation and bare soil covered larger 
areas in 1985 than in 2017. These decreasing trends 
might have two reasons. Vegetation and bare soil 
had been cleared to provide enough space for the 
increased population and required development. 
Due to unsuccessful agricultural practices/businesses 
and water shortage, some agricultural lands were 
abandoned by farmers, leading to reduction of 
vegetation cover and conversion to bare soil.

Changes in LSTs
Spatio-temporal distribution of LST in 1985 

and 2017 is illustrated in Fig. 4 and Table 3. The 
estimated LST in August 1985 was in the range of 
23.3°C to 47.4°C with an average value of 37.5°C and 
the variation of temperature in August 2017 was in 
the range of 22.8°C to 48.9°C with a mean value of 

42.7°C. The highest average temperature was found 
in bare soil in both years. Higher temperature of bare 
soil compared to urban surfaces stems from higher 
solar radiation due to low reflectivity in barren lands 
(Georgescu et al., 2011). Higher LST in urban areas 
compared to vegetation and water covers could 
be attributed to impenetrable surfaces including 
concretes, roads, and tiles extensively applied in 
urban areas (Zhang et al., 2015). Moreover, higher 
soil moisture in urban areas in contrast to bare 
soil resulted in evaporation from soil and thereby 
reduced LST (Rasul et al., 2016). Notably, there is a 
major distinction between the findings of previous 
studies and the results obtained in the current study. 
Previous studies indicated a higher temperature 
in urban areas than in surrounding areas (mostly 
vegetation), leading to formation of UHIs. However, 
this study revealed that the built up areas experienced 
a cooler LST compared to the surroundings areas 
(mostly covered by bare lands). This conflict can be 
due to various climatic conditions in the selected 
study area and tropical, Mediterranean and cold cities 

 
Fig. 4: LST maps in 1985 and 2017 in Isfahan 

   

Fig. 4. LST maps in 1985 and 2017 in Isfahan

Table 3: Land surface temperature distribu on over LULC classes between 1985 and 2017 in Isfahan 
 

LULC 
LST (°C), August 1985 LST (°C), August 2017 LST between 1985-2017 

Min Max Average Min Max Average  
Built-up 24.54 44.86 36.93 23.40 48.93 42.45 5.52 
Vegetatio 23.25 43.35 34.13 25.08 48.93 38.87 4.74 
Bare soil 26.68 47.42 40.66 27.83 48.93 45.88 5.22 
Water 24.97 38.01 31.09 22.83 42.49 29.48 -1.61 

 
  

Table 3. Land surface temperature distribution over LULC classes between 1985 and 2017 in Isfahan
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considered in previous studies. In the semi-arid climate 
of the study area, urban green areas may reduce LST 
through evaporative cooling. Therefore, urban centers 
experience a lower temperature than the surroundings 
with a low soil water content, sparse vegetation, and 
bare sandy soil. There are limited evidences that arid 
urban areas exhibit UHIs during nights and UCIs during 
daytime (Clinton and Gong, 2013, Keramitsoglou et al., 
2011). Further studies are recommended to obtain a 
comprehensive view on LULC changes effects on LST 
in semi-arid areas using nocturnal satellite images. 
On the other hand, water and vegetation covers 
had the lowest average LST both in 1985 and 2017. 
High thermal capacity in water leads to low surface 
temperature in water bodies compared to other 
land use types (Dong et al., 2018). Increase of water 

content in Zayandehrud resulted in cool temperature 
in some parts of the city in 2017 compared to 1985. 
Cooling role of water is also emphasized in the related 
literature (Deng et al., 2018, Xiao et al., 2018). Lower 
temperature of vegetation compared to built-up and 
bare soil is due to transpiration in dense vegetation 
which reduces the amount of heat store in the surface 
(Pal and Ziaul, 2017).

Comparison of retrieved LSTs in this study with the 
temperature of a ground monitoring station revealed 
that ground station temperature data did not match 
with LST obtained using satellite data. There is only 
one station in Isfahan for recording temperature 
which cannot provide detailed information on LST 
variations in all areas of the city. In other words, 
satellite images provide information on temperature 
dispensation over large scales which cannot be 
covered using a single ground station data. Numerous 
studies have reported both similarities (Mutiibwa 
et al., 2015) and dissimilarities (Amanollahi et al., 
2016) between LST and air temperature measured in 
ground station. However, this contrast has not been 
fully understood yet (Tomlinson et al., 2011).

 
Land-use/land-cover changes and land surface 
temperature relations

The effect of LULC conversion on LST is summarized 
in Fig. 5 and Table 4. As illustrated, the locations 
representing high LST were in fact the areas where 
vegetation was converted to bare soil (9.16 °C) and 
urban areas (8.41 °C). A marked city development 
took place in northern bank of Zayandehrud. In 
this area, vegetation covers were mostly replaced 
by built-up areas resulted in LST increase between 
1985 and 2017. Vegetation removal increases carbon 
dioxide accumulation in the atmosphere that in turn 
affects global surface energy budget (Islam and Islam, 
2013). Moreover, the growth of settlement increased 
LST by converting the vegetation to non-evaporating 
surface. Overall, the results confirmed the decreasing 
effect of vegetation and increasing effect of built-up 

Table 4: LST (°C) with respect to LULC changes 

LULC changes Average LST 
August 1985 

Average LST 
August 2017 

Average change in LST 
1985-2017 

Vegetation to built-up  34.41 42.82 8.41 
Bare soil to built-up 40.52 44.59 4.07 
Vegetation to bare soil 37.21 46.37 9.16 
Vegetation to water  29.10 28.46 -0.64 

 

Table 4.LST (°C) with respect to LULC changes

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: LST changes from 1985 to 2017 in Isfahan 
 

Fig. 5. LST changes from 1985 to 2017 in Isfahan
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areas on LST variations, which is also emphasized in 
other studies (Singh et al., 2017, Amanollahi et al., 
2016). In addition to land cover changes, population 
of urban areas contribute to increase of LST by rising 
the anthropogenic heat discharge (Zhou and Wang, 
2011). The results also implied that increase of LST in 
the bare soil converted to built-up might be related 
to global warming. The temperature of urban land 
increased by the increase of CO2 in upper atmosphere 
of the Earth. LST increase in the lands converted 
from bare soils to built-up areas might have another 
reason. Since the converted urban areas with built-up 
covers are fragmented in barren lands, they can be 
influenced by the temperature distribution from bare 
soil, which increases the temperature of fragmented 
built-up covers. Decrease of LST was found where 
vegetation covers had been converted to water, 
which is expected due to lower surface temperature 
of water compared to other land use types. However, 
this type of conversion had occurred in limited places.

CONCLUSION

Various land covers with different solar reflectivity 
(albedo), thermal conductivity, surface roughness and 
heat capacity experience different LST. Assessment of 
land cover impact on LST through RS data has received 
considerable attentions from researchers in recent 
years. Moreover, this topic is an area of concern for 
environmental scientists and planners due to the effect 
of urban temperature on population health. In the 
current study, it was tried to quantify variations in land 
use and consequently in land surface temperature over 
three decades in Isfahan, one of the fast-growing cities 
in Iran with semi-arid climate. The results obtained 
by application of thermal RS data and GIS techniques 
revealed that LULC and consequently LST had 
experienced extensive alterations in a 32-year period. 
According to the result build up areas, vegetation 
covers and bare soil exhibited 5.52°C, 4.72°C, and 
5.22°C rise in surface temperature from 1985 to 2017. 
On the other hand, water bodies experienced -1.61°C 
reduction in surface temperature in 2017 compared 
to 1985.  It was also found that LST variation in the 
study area was related to the LULC changes. While the 
transformation of vegetation and bare soil to build-up 
areas increased surface temperature by 8.41°C and 
4.07°C, vegetation transformation to bare soil and 
water resulted in 9.16°C increase and -0.64°C decrease 
in surface temperature. Unlike tropical, Mediterranean 

and cold cities which experience the urban heat island 
effect, Isfahan, with its semi-arid climate, experienced 
the urban cool island effect. Cool islands in Isfahan 
are produced by the surrounding bare soils with high 
surface temperature enclosing the built-up areas. 
Increase in temperature could cause issues in energy 
demand, water demand, infrastructure, and health. 
The results obtained in this study can be applied by 
decision makers as an environmental assessment tool 
for urban development. In other words, LST and LULC 
change information may be applied to construct an 
appropriate thermal environment through land use 
management. To have more detailed view on land 
surface temperature in urban areas, it is suggested to: 
1) Conduct the same investigation at night to evaluate 
nocturnal LST variations in arid areas; 2) Apply other 
algorithms including single-channel, split-window and 
multi-angle techniques for extracting more accurate 
LST maps. 
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ABBREVIATIONS

ԑ  Emissivity
ԑs  Soil emissivity
ԑv Vegetation emissivity
ԑw  Water emissivity
λ  Emitted radiance wavelength
ρNIR  Reflectance values of near infrared
ρRed  Reflectance values of visible red
AL  Band-specific additive rescaling factors
ANN Artificial neural network
b Boltzmann constant
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c Velocity of light
OC Celsius degree
DN  Digital number
GPS= Geographical Position System
h Planck’s constant
IPCC Intergovernmental Panel on Climate Change
K1 and K2 Calibration constants

L𝛌  TOA spectral radiance

Lmax𝛌  Spectral radiance scales to QCalmax

Lmin𝛌  Spectral radiance scales to QCalmin

LSE  Land surface emissivity
LST Land surface temperature
LULC Land-use/land-cover
MD Mahalanobis distance
MDM Minimum distance of mean
ML  Band-specific multiplicative rescaling factor
ML Maximum likelihood

MODIS  Moderate resolution imaging 
spectroradiometer

n Number of classes
NDBaI Normalized difference bareness index
NDBI Normalized difference built
NDVI Normalized difference vegetation index
NDWI Normalized difference water index
OBIC Object based image classification 
OLI  Operational land imager
Pv  Fractional vegetation cover
QCal  Quantized calibrated DN

QCalmax  
The maximum quantized calibrated pixel 
value

QCalmin  
The minimum quantized calibrated pixel 
value

RS Remote sensing
RVI Ratio vegetation index
SAM Spectral angle mapper
SAVI Soil adjusted vegetation index

SVM support vector machine

TB Brightness temperature
TM Thematic Mapper
TOA Top of the atmosphere
UCIs  Urban cool islands
UHIs Urban heat islands
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