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ABSTRACT: A prognosis model has been developed for solid waste generation from households in Hoi 
An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried 
out to gather data. The Bayesian model average method was used to identify factors significantly associated 
with waste generation. Multivariate linear regression analysis was then applied to evaluate the impacts 
of significant factors on household waste production. The model obtained from this study indicated that 
household location, household size, house area per person, and family economic activity are important 
determinants of the waste generation rate. The models could explain about 34% of the variation of the per 
capita daily waste generation rate. Diagnostic tests and model validation results showed that the regression 
model could provide reliable results of estimated household waste. The study revealed that per capita urban 
household waste generation is 70–80% higher compared to a rural household. The models also showed that 
if a family ran a business from home, the household waste generation rate would increase by about 35%. 
This result provides reliable information for better waste collection and management planning. Two other 
significant variables (family size and house area per capita) do not contribute much (less than 20%) to waste 
generation. Variables accounting for household income, presence of a garden, number of rooms in a house, 
and percentage of members of different ages were proven to be not significant. The study provides a reliable 
method for estimating household waste generation, providing decision makers useful information for waste 
management policy development.
	
KEYWORDS: Bayesian model average (BMA); Multivariate linear regression; Municipal solid waste 
management (MSWM); Prognosis model; Waste generation. 

INTRODUCTION
Solid waste generation is a result of the production 

and consumption cycle. Rapid urbanisation and 
industrialisation in developing countries have led 
to a dramatic increase in the volumes of municipal 
solid waste (MSW) generated daily (Abdoli et al., 
2016). Currently, more than 24 million tonnes of solid 
waste are generated in Viet Nam annually, with the 

figure likely to reach 52 million tonnes by 2020. The 
increasing volume of MSW has become an emerging 
environmental issue for authorities in Viet Nam 
(Nguyen et al., 2013). The growing amount of waste 
causes negative impacts on the environment and 
human health owing to inadequate disposal (Ngoc and 
Schnitzer, 2009). Eighty percent of MSW was disposed 
of in landfills without being recycled, reflecting 
material and energy losses to society (Ghinea et al., 
2016). Thus, integrated waste management, including 
recycling material and energy from MSW as well as 
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resource conversation, have become significant issues 
(van de Klundert et al., 2001; Zurbrugg et al., 2012). 
One of the challenges faced by local governments 
is predicting solid waste volumes reliably in order 
to devise appropriate actions and plans (Ghinea et 
al., 2016). Predicting waste generation volumes is 
increasingly essential in waste collection planning and 
treatment strategies, and establishing policies toward 
a sustainable waste management system (Chen and 
Chang, 2000; Thanh and Matsui, 2011; Abbasi et al., 
2012). In the case of Viet Nam, National Technical 
Regulation QCVN 07:2010/BXD (MOC, 2010) 
provided a method to estimate waste generation for 
five types of urban areas, based on population and a 
waste generation rate, which can be determined as 
outlined in the document. However, these results are 
not reliable in terms of practical application. Solid 
waste generation is impacted not only by demographic 
factors, but also by social, economic, and other factors 
(e.g. family expenses or waste prevention policies). 
Therefore, a more recent edition of this regulation, 
QCVN 07:2016 (MOC, 2016), does not use either 
this method or any other model for waste estimation. 
The lack of research into and methods for estimating 
waste generation have led to considerable challenges 
in municipal waste management in Viet Nam. Various 
modelling techniques, such as time series analysis 
(Abbasi et al., 2012; Kolekar et al., 2016), artificial 
neural network (Noori et al., 2010; Karpušenkaitė 
et al., 2016; Memarianfard et al., 2017), and fuzzy 
logic (Oumarou et al., 2012; Vesely et al., 2016), 
were applied to develop predictive models for solid 
waste generation and environmental management. 
According to Beigl et al. (2008), multivariate methods 
are very complex given the numerous interactions 
among the parameters and the difficulty of validating 
the models. Linear regression analysis, on the other 
hand, was popularly applied to estimate waste 
generation (Buenrostro et al., 2001; Bach et al., 2004; 
Beigl et al., 2008; Thanh et al., 2010; Ghinea et al., 
2016). The term ‘linear’ gives the casual observer 
the impression that linear models can only handle 
simple data sets; however, linear models can easily 
be expanded and modified to handle complex data 
sets, and they are used in empirical investigations 
and data prediction (Faraway, 2005). Previous studies 
modelled total municipal waste generation using 
various variables, and reported that the municipal 
waste generation rate was significantly correlated 

with economic factors. At the regional and national 
levels, Hockett et al. (1995) created a multiple linear 
regression model of per capita waste generation 
that is expressed by demographic, economic, and 
structural determinants. Their study found that the 
per capita purchase of goods and waste treatment fees 
are significant determinants of waste generation, and 
demographic factors are not significant as correlates 
of waste production. Thøgersen (1996) studied 18 
member countries of the Organisation for Economic 
Co-Operation and Development (OECD), and showed 
that Gross Domestic Product (GDP) per capita 
explained 50% of the variations in per capita waste 
generation (R2=0.5) based on simple linear regression 
analysis. Exponential and polynomial linear regression 
analysis in this research also proved that there was 
a significant correlation between GDP per capita 
and waste produced per capita. Daskalopoulos et al. 
(1998) provided predictive models for the European 
Union and the United States of America, showing the 
total amount of waste increases annually with gross 
GDP and population acting as predictor variables in 
polynomial equations. Another study estimated MSW 
generation using a multivariate linear regression model 
that considered the GDP per capita, infant mortality 
per 1,000 births, population of 15- to 59-year-olds, and 
average household size as predictor variables (Beigl 
et al., 2004). Considering factors affecting household 
waste generation, Dennison et al. (1996) and Abu 
Qdais et al. (1997) estimated the household waste 
generation rate based on the number of members in 
a family, using linear regression analysis. Abu Qdais 
et al. (1997) indicated that the correlation between 
the amount of waste generated and the household size 
was weak (R=0.33), whereas the relationship between 
waste generated and property rental fee attributed 
to family income was strong (R=0.83). Lebersorger 
et al. (2003) found that for multi-family dwellings, 
significant linear correlation existed between the 
quantity of waste generated and the house type and age. 
A significant positive correlation between the number 
of rooms in a house and the waste production rate was 
uncovered by Monavari et al. (2012). Multivariate 
linear regression analysis was also applied widely in 
research on waste generation forecasting (Grazhdani, 
2016). Stepwise analysis is normally utilised to ensure 
that the final  regression  model provides the best fit 
(Chang et al., 2007; Shamshiry et al., 2014; Boulet 
et al., 2016; Akhtar et al., 2017). However, using this 
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analysis method was not recommended because it did 
not correctly determine the best set of variables and 
tended to yield irreproducible results (Derksen and 
Keselman, 1992; Hamby, 1994; Thompson, 1995). 
In addition, diagnostic checks to verify the statistical 
adequacy of the model were not carried out (Bdour 
et al., 2007; Karpušenkaitė et al., 2016). Not much 
attention was paid to model validation with a new data 
set (Lebersorger and Beigl, 2011; Ghinea et al., 2016; 
Akhtar et al., 2017). The two analyses noted above were 
essential to evaluate the reliability and performance of a 
linear regression model. Benítez et al. (2008) developed 
a prognosis model for residential solid waste generation 
using simple and multivariate linear regression, with 
household income, education levels, and household 
size as explanatory variables. The selected model could 
explain 51% of the variation in the waste generation 
rate but used all the predictor variables proposed. 
Apparently, in multivariate linear regression models, 
the higher the number of independent variables, the 
higher the value of the coefficient of determination (i.e. 
R-square). However, choosing a model based on the 
maximum R-square value is not a feasible option when 
dealing with many independent variables. This study 
aimed to provide a reliable model to help decision 
makers and stakeholders to forecast quantities of 
household waste. The Bayesian Model Average (BMA) 
method was used instead of stepwise regression to 
select predictor variables and prevent noise variables 
from gaining entry to the model (Derksen and 
Keselman, 1992) Multiple linear regression models 
were developed, with significant determinant variables 
being chosen by the BMA. Diagnostic tests for the 
hypothesis of the linear assumptions and a conventional 
validation method were conducted used to evaluate the 
performance of the model. The current study used data 
from Hoi An City, Viet Nam, carried out in 2015. 

MATERIALS AND METHODS
The general procedure of the methodology applied 

is briefly described as follows. First, household waste 
sampling and a questionnaire survey were carried out 
to gather data on waste generation and explanatory 
variables. Next, the BMA method was used to select 
significant predictor variables for the regression 
model. Then, the regression coefficients of the model 
were identified. Finally, the test for linear hypothetical 
assumptions and validation were performed to 
evaluate the model’s performance.

Case study and data collection
 The research was carried out in Hoi An City 

(HAC), the cultural and tourist centre of Quang Nam 
on the  south central coast  of Viet Nam. According 
to the Hoi An Statistical Year Book 2013, the city 
has a population of around 93,000 (HASD, 2013). 
Tourist activities characterise the municipality, which 
attracts about 1.5 million of tourists annually, and 
provides considerable employment. MSW in Hoi 
An is currently disposed of at open dump landfills 
without any precautions or any operational controls. 
One composting plant with a capacity of 55 tonnes per 
day has been operating inefficiently, and the product 
did not sell well in the market. The open dump landfill 
and the composting plant have caused huge adverse 
effects on the environment and public health. Hoi An 
is the first and only city in Viet Nam to successfully 
carry out waste separation (biodegradable and 
nondegradable waste) at source, and the awareness of 
residents, as well as the efficiency of waste separation, 
has been increasing (Chu, 2014). However, all 
waste treatment technologies in Hoi An have failed, 
including a new incinerator installed in 2015. Chu 
(2014) also showed that 30% of communities have 
been affected by environmental pollution related 
to solid waste treatment and recycling activities; 13 
out of 44 communities reported that residents often 
complained about the collection system. Moreover, 
owing to the failure of new treatment plants, residents 
have lost faith in waste managers and authorities. 
The motivation of residents to separate waste at 
source might also be lost, since they do not see any 
improvements in the waste treatment practices and 
their surrounding environment. Citizens’ lack of faith 
could negate the future efforts of the authorities to 
improve the waste management system. Therefore, 
the development of a sustainable solid waste 
management situation is an urgent need in HAC. The 
result of this study will provide an applied prognosis 
model with which to estimate the waste generation 
from households in Hoi An, which is an essential 
factor of MSW collection and management planning. 
The waste generated by families was assessed through 
door-to-door sampling of the whole city in 2015. To 
reduce variations in household waste generation, the 
stratified random sampling method was applied. The 
city was divided into two strata based on a rural–urban 
topology. The number of samples was estimated from 
the number of households in each stratum, with a 

http://en.wikipedia.org/wiki/South_Central_Coast
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sampling ratio of 13 households per 1000 (Hoang et 
al., 2017). The statistical sample size needed was 280; 
321 households participated in the sampling program. 
Waste generated from households was sampled 
over 14 consecutive days by 25 students from Da 
Nang University and two authors. Every household 
participating in the program was given a code marker 
to put on their door to avoid collection mistakes. 
The sample collection and analysis procedures are 
presented in Fig. 1. 

Then, a survey was conducted using face-to-face 
interviews at all households involved in the project. 
This was done to obtain information on the personal 
and socio-economic background of the family, 
such as house area, presence/absence of a garden, 
family size, ages of family members, and monthly 
income. The results obtained from this survey were 
interpreted to identify the explanatory variables for 
the mathematical models of estimates of household 
waste generation.

Variables used in modelling
Regression analysis was used to explain the 

relationship between the dependent variable Y 
(response or output variable), and one or more 
independent (predictor) variables X. Thus, analysis 
of data gathered from the questionnaire survey was 
followed by identifying the variables involved. 
The database comprised ten independent variables 
representing factors influencing the demographics, 
geography, and economics of household waste 
generation. The response variable is the mean 
of the per capita waste (kg/capita/ day) gathered 
from the household waste samples. Three types of 
independent variables, including categorical, discrete, 
and continuous variables, were employed. Table 1 
explains the variables included and symbols assigned. 

A variable matrix consisting of the information on 
households/families sampled was constructed and 
used as the input dataset for the analysis.

Selection of determinant variables 
The data set was divided randomly into two: 70% 

of the data was used as the training set and the other 
30% was used for testing. The training set was used 
to determine the predictor variables and identify the 
coefficient of the model, while the testing set was 
used to validate the model. The BMA method (Raftery 
et al., 1997, Hoeting et al., 1998) was utilised to 
identify the combination of significant independent 
variables that best explains MSW generation. The 
‘best’ model can provide the most precise prediction 
with a reasonable number of variables or accurate 
estimations for new cases (Raftery et al., 1997). The 
BMA provides a consistent mechanism of accounting 
for model uncertainty; this is often ignored in model 
selection, leading to overfitting models and possibly 
causing over-confident inferences (Hoeting et al., 
1999; Fernández et al., 2001). According to Hoeting 
et al. (1999), the BMA also improves the out-of-
sample predictive performance of linear models. 
A BMA solution to this problem provides optimal 
predictive ability by averaging over all possible 
models (Madigan and Raftery, 1994). Quantities 
of interest and parameter estimates are provided 
via direct application of the principles described as 
follows: 

The posterior distribution given data Z of the 
quantity of interest∆, such as a model parameter or a 
future observable, is defined by Eq. 1.
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consideration. Eqs. 2 and 3 give the posterior 
probability for model Mk and the integrated likelihood 
of Mk respectively.
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The Bayesian information criterion (BIC) 
approximation is formally defined in Eq. 5. The BIC 
is used as a criterion for model selection from the 
set of models, and the model with the lowest BIC 
approximation is preferred.

BIC = -2. log (RSSp) + p.log n                                    (5)

Table 1: Types of variables in linear regression 
 

Type of variable Variable Symbol Unit/value/types Determination of variables 
Response variable 
Dependent continuous 
 

Per capita waste 
generation per 
day 
 

Yhhw 
 
 

kg per capita per 
day 

 

Average daily waste generated from each 
family member in a household 
 

Predictor variables 
 

 
 

 
 

 
 

 
 

Independent categorical 
 

Household 
location 
 

Xplc 
 
 

Urban (=1) 
Rural (=0) 

 

If the house is located in an urban area 
If the house is located in a rural area 
 

Independent categorical 
 

House garden 
Home business 
 

Xgar 
 
 

Yes (=1) 
No (=0) 

 

The house has a garden 
The house does not have a garden 
 

Independent categorical 
 

 
 
 

Xbus 
 
 

Yes (=1) 
 
 

The family members run a business (e.g. 
convenience store, restaurant, café bar, shop, 
mini hotel, vehicle rental) from home   

 
 

 
 

 
 

No (=0) 
 

The family members do not run a business 
from home 

Independent discrete 
 
 
 

Family income 
 
 
 

Xinc 
 
 
 
 

1 
2 
3 
4 
5 
6 

Very low: less than 500 VND per person per 
month 
Low: 500–1,200 VND per person per month 
Lower-middle: 1,200–2,500 VND per person 
per month 
Upper-middle: 2,500–4,000 VND per person 
per month 
High: 4,000–6,000 VND per person per month 
Very high: more than 6,000 VND per person 
per month 

Independent discrete Household size Xsiz Number The number of individuals in the family 

Independent discrete Number of rooms Xrom Number The number of rooms in the house 
Independent continuous House area Xare m2 The total area of the house 

Independent continuous House area per 
person 

Xpa m2 per person The area of the house divided by the number 
of family members 

Independent continuous % of children Xchi Percentage The percentage of people younger than 20 
years in the family 

Independent continuous % of adults Xadu Percentage The percentage of people aged 20-59 years in 
the family 

Independent continuous % of old people Xold Percentage The percentage of people older than 59 years 
in the family 

 
  

Table 1: Types of variables in linear regression
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where, RSSp is the squared sum of residuals in the 
fitting sample data for the model with p independent 
variables, p is the number of regressors including the 
intercept, and n is the number of observations or the 
sample size.

   
Multivariate linear regression model

A multivariate linear regression model is described 
in Eq. 6.

Y = α + β1X1 +β2X2 +β3X3 +… + ε                           (6)

Where, α is the intercept term indicating the mean 
of the dependent variable Y in case all predictor 
variables X equal 0; and β is a vector of βi, the slope 
of the model, that explains the average change in 
the dependent variable. The residual ε represents the 
difference between estimated and observed values. ε 
may include measurement error, although that is often 
due to the effect of variables that are unincluded or 
unmeasured (Faraway, 2005). In linear regressions, 
it is assumed that the errors are normally distributed, 
independent, and have equal variance σ2 (ε~N(0,σ2I)). 
The correlation of residuals is vital for time series 
data because time series regression accounts for 
autocorrelations between times. Meanwhile, in non-
time series regression, the independence of errors is 
presumed or at least minimised. Theoretically, the 
residuals from the model should not be correlated 
with either independent or dependent variables.

Testing model assumptions
The validity of the assumptions underlying the 

chosen model should be verified. The residual ε was 
used to test the linear model assumptions. Formal 
diagnostic tests can ensure the accuracy of the results 
but may be powerless to detect unexpected problems, 
especially in data related to social and human activities. 
Graphical techniques are usually more efficient at 
revealing the overall structure of the data set. They 
tend to be more versatile and informative (Faraway, 
2005). Moreover, graphical methods may be useful 
for describing and understanding the underlying 
structure of the data (Wilk and Gnanadesikan, 1968). 
Therefore, in this study, the graphical approach was 
applied as the diagnostic test for the hypothesis of the 
assumptions of the linear model. The normality of 
residual distribution is tested with a normal quantile 
plot of the residuals (Wang and Bushman, 1998), in 

which the ordered residuals from the fitted model 
(vertical axis) are plotted against the reference line 
of a normal distribution having the same mean and 
variance (horizontal axis). The model residual points 
should fall close to the reference line on such a plot 
if the errors are normally distributed. Violations 
of normality often occur because the distributions 
of either the predictor or the response variable are 
significantly not normal. We plotted the residuals 
versus the fitted values and the independent variables 
to find ways to improve the model. A useful method is 
to transform the predictor variable if the non-random 
shape occurs in only one plot. If it happens in more 
than one plot, we should transform the response 
variable to improve the model. The plot of residuals 
versus estimated values (fitted values) can also 
indicate constant variance if the scatter is symmetric 
vertically around zero. There are some approaches 
to dealing with non-constant variance violations in 
a linear regression model. Weighted least squares or 
transformations of the response variable can be used 
to achieve a constant variance of the outcome variable 
(Faraway, 2005). Likewise, to test for  violations of 
independence, the distribution of the residuals should 
be random and symmetric around zero under all 
conditions. Outlier observations which do not fit the 
model, and influential observations that have large 
effects on the model, will be detected. The outlier 
test was carried out using the Bonferroni correction 
method (Faraway, 2005), and the Cook statistic was 
used for diagnostic tests of influence (Cook, 1977).

Model evaluation and validation	
A conventional validation approach using an external 
validation method was applied to test the model to 
avoid over-fitting (Faber and Rajkó, 2007). This 
requires the validation samples to be entirely different 
from the training samples that constructed the model; 
this is necessary to properly assess the model’s ability 
to forecast for unknown future samples (Bleeker 
et al., 2003; Faber and Rajkó, 2007). To ensure the 
model can perform using a new data set, the authors 
divided the original data into two subsets including 
a training set (70%) and a testing set (30%). The 
former was used to construct the model, whereas the 
latter was for validation. A combination of statistical 
metrics, including coefficient of determination (R2), 

adjusted R2 (R2
adj), mean absolute error (MAE), root 

mean square error (RMSE), and normalised root mean 
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square error (NRMSE), were applied to assess the 
model performance. R2 is a useful property indicating 
the goodness of fit of the model. R2

adj  also indicates 
how well the model fits the data, but it adjusts for 
the number of independent variables in the model. 
MAE and RMSE are useful measures widely used 
to evaluate models. MAE assigns the same weight to 
all kinds of errors, which is appropriate to describe 
uniformly distributed errors, while RMSE favours 
errors with larger absolute values and is appropriate to 
explain normally distributed errors (Chai and Draxler, 
2014). In this study, RMSE was used to assess 
the performance of the predictive model since the 
residuals of the linear regression model are expected 
to be normally distributed. If the RMSE of the test 
data set is significantly higher than that of the training 
data set, over-fitting occurs. If the two RMSEs are 
close, the model is valid and can be used to predict 
unknown data. However, the ranges of training and 
testing data differed; thus, to compare the RMSEs of 
the two data sets, NRMSE was used. NRMSE is the 
ratio of RMSE to the range of the data set; it ranges 
from 0 to 1. Eqs. 7 and 8 explain RMSE and NRMSE, 
respectively. MAE was calculated to describe the 
average magnitude of the errors.

n
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Where,
iŷ is the estimated value of the outcome 

variable of observation i, iy is the observed value 
of the dependent variable observation i, maxy is the 
maximum observed value of the dependent variable,

miny is the minimum observed value of the dependent 
variable, and n is the sample size. 

Bootstrapping with 10,000 replications on the 
training data set was carried out to calculate the 95% 
confidence interval of R2 (95% CI). The coefficient 
of determination of the model run on the testing data 
were also calculated. The R2 of the model run testing 
data was expected to fall in the 95% CI.

RESULTS AND DISCUSSION
Significant independent variables and selected models

The face-to-face interview questionnaire received a 
response from 286 out of 321 households, which was 

more than the statistically required sample size (281). 
Therefore, the nonresponse samples were removed 
in later analysis. Fig. 2 shows the estimates of the 
correlation coefficients of the variables, and indicates 
that the correlation coefficients of the outcome and 
explanatory variables are low (<0.33). In Fig. 3, the 
horizontal axis names options chosen by the BMA. 
Red indicates the predictor variables correlated with 
the outcome variable with a positive coefficient. Blue 
represents the negatively correlated variables, and 
the other colour shows that the variable is not present 
in the model. The result of BMA method indicates 
that the four independent variables, household 
location (Xplc), home business (Xbus), household size 
(Xsiz), and house area per person (Xpa), proved to 
be significant for estimating daily per capita waste 
generation (Fig. 3). Xplc and Xsiz were present in all 
groups of significant determinant variables selected 
by BMA (p=100), while the probability of Xbus and 
Xpa appearing in models chosen by the BMA is 96.4% 
and about 74%, respectively. Interestingly, household 
income, presence/absence of a garden, and percentage 
of members of the family of different age ranges were 
not significant, indicating that these factors do not 
explain variations in the waste generation rate.

Xsiz is negatively correlated with daily per capita 
waste generation; an increase in the number of family 
members will lead to a decrease of daily per capita 
waste generation. Our finding that there is a qualitative 
relationship between household size and daily per 
capita waste generation agrees with those of previous 
studies; Benítez et al. (2008), Qu et al. (2009), and 
(Sukholthaman et al., 2015) found the same negative 
influence of household size on waste generation 
rate per capita. The positive correlation between the 
regressor (Xplc) and the response variable indicated 
that the household waste generation rate is associated 
with the area the household is located in. People living 
in urban areas generated more waste than those living 
in rural areas. In contrast, Hockett et al. (1995) found 
that urbanisation was not a significant determinant of 
waste generation rate. In Viet Nam, homes commonly 
serve as bases for businesses such as convenience 
stores, restaurants, or a place for manufacturing goods. 
The presence of a business at home might affect 
the quantity of waste generated per capita (Parizeau 
et al., 2006). Xbus was confirmed to be a significant 
determinant of household waste generation rate (Table 
2). Xbus correlating positively with waste generation 
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Fig. 2: Correlation coefficients of the variables 
  

Fig. 2: Correlation coefficients of the variables

 
  Fig. 3: Predictors chosen for the most reliable models by BMA
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means that families running a home business have 
a higher per capita daily waste generation rate than 
those without a home business. Higher income leads 
to the consumption of more goods and therefore to 
the production of more waste (Buenrostro et al., 
2001). Nevertheless, other researchers found that the 
household income is not related to waste generation 
by measuring different types of income, such as 
continuous income (Bernache-Pérez et al., 2001; 
Benítez et al., 2008; Grazhdani, 2016), categorical 
income (Bolaane and Ali, 2004, Gomez et al., 2008), 
or proxy variables (Mbande, 2003; Gomez et al., 
2008; Prades et al., 2014). The result of this study 
indicates that direct income (Xinc) is not a significant 
determinant of waste generation. Investigating this 
relationship is complex because accurate income data 
are difficult to solicit from households, especially 
in developing countries (Parizeau et al., 2006). In 
HAC, people might consider their income to be a 
private matter, and business households try to conceal 
their real income to avoid paying more taxes. A 
proxy variable of income, the total area of the house 
(Xare), was not significant in the estimation of per 
capita waste generation, while Xpa did prove to be a 
determinant of the same. This means that the amount 
of waste produced is correlated to the average space 
in the house per family member. The number of the 
rooms in the house was not an explanatory variable 
for waste generation estimation, according to the 
BMA. This result is inconsistent with a previous 
study in which the production of household waste 
was found to be positively correlated with the number 
of rooms (Monavari et al., 2012). The presence or 

absence of a garden and the age ranges of household 
members were not significantly correlated with the 
quantity of waste produced. The BMA method not 
only detected the best model for predicting household 
waste generation, but also suggested other reliable 
models based on BIC approximation. Thus, we had 
different models with which to identify the amount 
of waste generated. Table 2 shows the five best waste 
generation prognosis models suggested by the BMA. 
Model 1, with four predictors, has the lowest BIC 
approximation (-62.3), which means that the linear 
regression model using four variables (Xplc, Xbus, Xsiz, 
and Xpa) is the best multivariate model among all the 
possibilities.

Posterior probability represents the likelihood that 
a model will explain the observed data correctly. The 
posterior probabilities of Models 1 and 2 are higher 
than those of the other models, approximately 42% 
(0.422) and 19% (0.187), respectively. This indicates 
that Models 1 and 2 explain observations on waste 
generation more accurately than the other models, 
with posterior probabilities around 5%. Model 2, 
with three independent variables, has lower R2

adj 
(about 30%), and models with four and five regressors 
have R2

adj values of about 33%, which are similar. 
This means that adding more than four independent 
variables to the model will not improve its fit. Table 2 
also shows the significance level of every variable in 
each model. Models 3, 4, and 5 each have more than 
four regressors, but not all the explanatory variables 
are significant. The variables Xrom (Model 3) and Xgar 
and Xare (Models 4 and 5) proved to be negligible 
determinants of waste generation. Thus, we choose 

Table 2: Best models as selected by the Bayesian Model Average method 
 

Independent variables Model 1 Model 2 Model 3 Model 4 Model 5 
Intercept 
Xplc(Urban) 
Xare 
Xrom 
Xgar(YES) 
Xsiz 
Xpa 
Xinc 
Xbus(YES) 
Number of variables used 
BIC 
Posterior probability 
R2 

R2
adj 

F-statistic 

-1.539 (***) 
0.578 (***) 
- 
- 
- 
-0.128 (***) 
0.004 (**) 
- 
0.302 (**) 
4 
-62.3 
0.422 
0.343 
0.329 
25.43 

-1.293 (***) 
0.535 (***) 
- 
- 
- 
-0.147 (***) 
- 
- 
0.317 (***) 
3 
-60.7 
0.187 
0.319 
0.309 
30.64 

-1.402 (***) 
0.560 (***) 
- 
-0.055 ( ) 
- 
-0.120 (***) 
0.004 (**)  
- 
0.308 (**) 
5 
-58.8 
0.071 
0.348 
0.332 
20.76 

-1.894 (***) 
0.457 (***) 
0.0005 ( )  
-  
-0.08 ( ) 
- 
- 
- 
0.292 (**) 
4 
-57.8 
0.043 
0.328 
0.318 
10.61 

-1.517 (***) 
0.557 (***) 
- 
- 
-0.061 ( ) 
-0.125 (***) 
0.004 (**) 
- 
0.304 (**) 
5 
-57.5 
0.038 
0.344 
0.327 
20.38 

Note: p ~ 0 (***); p < 0.001 (**); p < 0.05 (*); p < 0.1 ( . ); p < 1 ( ) 

 
  

Table 2: Best models as selected by the Bayesian Model Average method
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Models 1 and 2, in which each predictor variable 
is significant, BIC approximations are small, and 
posterior probabilities are high, to test the assumptions 
and predictive performance of the linear model.

Multivariate linear regression models for household 
waste generation

Eqs. 9 and 10 show the parameter estimates for the 
selected Models 1 and 2, respectively:

Log (YHHW) = -1.539 + 0.578Xplc(Urban) 
– 0.128Xsiz + 0.004Xpa + 0.302Xbus(YES)                  (9) 

Log (YHHW) = -1.293 + 0.535Xplc(Urban) 
– 0.147Xsiz + 0.317Xbus(YES) 		            (10)

The intercept -1.539 (in Eq. 9) is the unconditional 
expected mean of the logarithm of the waste 

generation rate. Therefore, 0.215 (kg/capita/day), 
which is the exponential value of the intercept, is the 
geometric mean of the waste generation rate. The 
exponential value of the coefficient for Xplc is 1.78 
(e0.578=1.78), indicating that average per capita waste 
generation of households in urban areas is 78% higher 
than that of households in rural areas when other 
independent variables are held constant. Similarly, a 
person in a family running a home business generated 
35% more waste than one living in a family that does 
not (e0.578=1.35). Household size is the only significant 
predictor variable negatively correlated with waste 
generation, indicating that an increase in the number 
of family members is associated with a decrease in 
per capita waste generation. The coefficient of Xsiz in 
the model is -0.128, meaning that an increase of one 
person in a family leads to a 12% decrease in waste 

 
Fig. 4: Fitted line plot of a model with four regressors: Xplc, Xsiz, Xpa, and Xbus 
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generation rate (e-0.128=0.88) when other variables are 
held constant. The parameter explanation is similar to 
that of Model 2. Fig. 4 describes the predicted value 
of per capita waste generation from Model 1, which 
has four predictor variables. The different lines in the 
plot represent the estimated waste generation rate for 
various values of Xsiz, and four values of Xsiz (Xsiz=3, 4, 
5, and 6) are shown. Fig. 5 also describes the predicted 
waste generation rates based on Model 2, which has 
three independent variables.

The purpose of this study was to find a simple 
and reliable model to estimate waste generation, in 
order to contribute to improving waste management. 
Models can provide reliable information to support 
current waste collection and transportation methods. 
Exact estimation of waste generation in rural and 
urban areas results in better design and arrangement 
of vehicles, labour, and collection routes. This in turn 
will improve the current collection system, which has 
so far been inefficient owing to poor calculation and 
design. Moreover, results from the model estimation 
show that a decentralised management approach 
could benefit waste collection, as the waste generation 
rate varies in urban and rural areas. On-site or small-
scale treatments might reduce the cost of collecting 
the low amount of waste generated in faraway areas, 
especially since biodegradable waste has great 
potential be composted at home or recycled into feed 

for animals in agricultural areas. 
The result of the study also suggested that home 

businesses contributed considerably to the total waste 
required for collection from a household. Therefore, 
estimates of waste generated from households running 
home businesses could provide a basis for the decision-
makers to improve the waste management system, by 
assigning more importance to the commercial and 
tourist sectors in the city. For instance, increasing the 
waste collection fee for the home and business sectors 
can improve waste management, since the number 
of households involved in business activities are 
increasing quickly.

Analysis of models
Diagnostic test for linear model assumption

Fig. 6 presents the results of tests for normality, 
constant variance, and autocorrelation. Two quantile-
quantile plots (Figs. 6.1 and 6.7) compare the 
residuals (the points on the graph) to ‘ideal’ normal 
observations (the line). The residuals follow the line 
approximately, indicating that the errors of both 
models are normal. The plot of the residuals versus 
fitted values (Figs. 6.2 and 6.8) are used for a test 
of non-constant variance. The scatter is symmetric 
vertically around zero, demonstrating that there is 
no evidence of non-constant variance. Moreover, 
Figs. 6.2, 6.3, 6.4, 6.5, and 6.6 (Model 1) and Figs. 

 
 

Fig. 5: Fitted line plot of model with three regressors Xplc, Xsiz, and Xbus 
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Fig. 6: Tests for the linear assumption of Models 1 and 2 
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6.9, 6.10, and 6.11 (Model 2) show that the scatter 
of residuals is symmetric approximately around zero 
in a plot with all independent variables. This means 
that there is no problem with the correlation of the 
residuals. The results from the graphical test indicate 
that all linear assumptions were satisfied.

Influence of variables and observations
Fig. 7 shows the relative importance (with 95% 

confidence interval) of the regressors for the two 
models, as determined by the Local Matching Gabor 
method (Johnson and LeBreton; 2004, Grömping, 
2006). Household location (Xplc) acts as the primary 
predictor variable in both models because its 
percentage of contribution is about 40%, followed by 
household size (Xsiz) at around 30%. The independent 

variables that contribute less to waste generation are 
household area per person (Xpa) and home business 
(Xbus), with values of 10% and 20%, respectively.

Fig. 8 indicates that the observations have a large 
impact on the predicted values, measured by Cook’s 
distance (Cook, 1977, Cook, 1979). Observations 
numbered 13, 70, and 184 significantly influence the fit 
of the models compared to the other observations, but 
none of them has too much influence (Cook’s distance 
less than 1.0) (David, 2007). Outlier tests show that 
observation 47 was an outlier in both models.

Model validation
The R2 values of the models are 0.34 (model 1) 

and 0.32 (model 2), meaning that they explain about 
34% and 32%, respectively, of the variation in daily 

 
 

Fig. 7: Relative importance of regressors for waste generation rate 
  

 
 
Fig. 8: Influence of observations on Models 1 and 2. Observations with a particularly high level of 

influence are numbered in red and blue. 
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Fig. 8: Influence of observations on Models 1 and 2. Observations with a particularly high level of influence are numbered in red and blue.
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per capita waste generation rate. Other multivariate 
linear regression studies had low R2 values; 51% 
in Benítez et al. (2008), 36% in Grossman et al. 
(1974), and 48.7% in the study by Bach et al. (2004). 
The weak coefficient of determination could be 
explained by the fact that waste generation studies, 
which attempt to predict human behaviours such as 
habit and lifestyle, normally have R2 values lower 
than 50%. Human behaviours are simply harder to 
predict than physical processes. However, the goal 
is not to maximise the coefficient of determination, 
because obtaining more predictor variables may cause 
over fitting. In other words, a low R2 value does not 
mean the model is useless, and a significant R2 value 
cannot indicate that the model is useful (Brown and 
Berthouex, 2002). A good model can also maximise 
the percentage of variations explained but limit the 
ability of the results to be generalised (Beigl et al., 
2008). If a model satisfies all the assumptions of 
the linear regression, it is the correct one to use to 
estimate waste generation. Moreover, it can help one 
draw meaningful conclusions about how changes in 
the predictor variables are associated with variations 
in the response variables. 

The multivariate linear regression model created 
by the training data set was run on the testing data 
set and the statistical performance metrics were 
calculated. Table 3 explains the model validation 
results. In both models, the R2 values of the testing 
data set are in the 95% CI, and the NRMSEs and 
MAEs of both data sets are very close, which means 
the two models perform well with the new data. 
On the other hand, the RMSEs are smaller than the 
standard deviation of the response variable (0.712), 
indicating that the models produce less variation than 
the observations. Lastly, low NRMSEs (about 0.13 
out of a possible range of 0 to 1) demonstrate that 
the fitted values are quite close to the observations. 
Thus, both models show good performance in 
predicting household per capita waste generation. 
Model 1 performed better than Model 2 because it 

has a higher R2 value, a higher posterior probability, 
and smaller errors (RMSE and MAE).

CONCLUSION
The models constructed in the current study are 

valuable in estimating waste generation, as they 
provide observational evidence of the influence of 
multiple factors. They indicate that the impacts of 
socio-demographic and geographic variables and 
family economic activities are highly significant for 
waste generation rates. The models cannot predict 
waste generation in the future, but they can provide 
reliable information needed to improve current waste 
management systems. Household location is the 
predictor that most affects the daily waste generated 
per capita. Both models showed that a person in an 
urban household produced much more solid waste (70–
80%) than one in a rural household. This information 
provides an exact estimate of waste generation in rural 
and urban areas, and can be used to improve calculation 
and arrangement of vehicles, labour, and collection 
routes. It also suggests that a decentralised treatment 
approach could reduce the collection cost for the low 
amount of waste generated in areas located further 
away from landfills. However, the implications of this 
need to be studied carefully, and appropriate legislation 
would need to be passed to encourage decentralised 
waste treatment. Education and awareness on waste 
generation were successfully carried out in HAC, 
and these should be maintained and improved. 
Another important factor influencing household waste 
generation in HAC is family economic activity. The 
two models showed that if a family runs a business 
from home, their household waste generation rate will 
increase by about 35%. Waste fees for the business 
sector might be an important factor to consider in 
waste collection and management planning, since 
the number of households running businesses, such 
as small restaurants, homestays, shops, convenience 
stores, and vehicle rentals to provide services for 
tourists and locals, have been rising gradually. This 

 
 
 
 
 
 

Table 3: Results of model validation 
 
Model Datasets Standard 

deviation R2 Mean R2
 

(bootstrap) 95% CI of R2 RMSE NRMSE MAE 

Model 1 Train set 0.712 0.343 0.354 0.235 – 0.428 0.576 0.131 0.451 
 Test set  0.281   0.678 0.137 0.488 
Model 2 Train set 0.712 0.319 0.327 0.220 – 0.406 0.586 0.134 0.453 
 Test set  0.256   0.689 0.139 0.492 
 

Fig. 6: Tests for the linear assumption of Models 1 and 2
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study found that household size and area of the house 
are also significant determinants of per capita waste 
generation, while other variables, particularly income 
per person, proved not to be significant as correlates 
of waste production. The results from this study 
demonstrate that the Bayesian Model Average (BMA) 
method is a robust one to determine firm options for 
multiple linear regression models, especially those 
dealing with a large number of independent variables. 
The result of the BMA method indicated that a linear 
regression model with four independent variables 
(Xplc, Xsiz, Xpa, and Xbus) was the best model to estimate 
waste generation in HAC because it had the lowest 
BIC approximation and was of a reasonable size. The 
model with three regressors (Xplc, Xsiz, and Xbus) had 
a slightly lower performance, but is still very useful to 
quickly predict household waste generation because 
information on the predictor variables is available in 
the census database. This study attempted to increase 
the understanding of waste generation to support 
waste management planning for the city; thus, the two 
models are useful not only for analysing the key factors 
influencing waste generation but also for providing 
waste managers a way to estimate waste generation 
volumes in order to improve waste reduction and 
management efforts. Thus, the results and methodology 
are expected to be informative for authorities, decision 
makers, stakeholders, and planners to develop waste 
management plans. Note, however, that the model 
developed in this paper is not reliable for predicting 
future waste generation; a lack of historical data caused 
difficulties in the development of a predictive waste 
model. Thus, future studies should concentrate on 
devising a municipal waste generation model that can 
forecast future waste volumes. 
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ABBREVIATIONS
BMA Bayesian model average
BIC Bayesian information criterion
EU European Union
Eq. Equation
GDP Gross domestic product
HAC Hoi An city
MAE Mean absolute error
m2 Cubic meter
MSW Municipal solid waste
NRMSE Normalized root mean square 

error
MSWM Municipal solid waste man-

agement
OECD Organization for Economic 

Co-operation and Develop-
ment

P Probability value
% Percentage
R2 Coefficient of determination
RMSE Root mean square error
USA United States of America
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